一介萌新 发表于 2018-9-4 16:45:41

奇怪的bug,是我的环境问题还是代码问题,有人能帮忙看一下吗,基础薄弱的菜鸟求助..

import copy, numpy as np
np.random.seed(0)

# compute sigmoid nonlinearity
def sigmoid(x):
    output = 1/(1+np.exp(-x))
    return output

# convert output of sigmoid function to its derivative
def sigmoid_output_to_derivative(output):
    return output*(1-output)


# training dataset generation
int2binary = {}
binary_dim = 8

largest_number = pow(2,binary_dim)
binary = np.unpackbits(
    np.array(,dtype=np.uint8).T,axis=1)
for i in range(largest_number):
    int2binary = binary


# input variables
alpha = 0.1
input_dim = 2
hidden_dim = 16
output_dim = 1


# initialize neural network weights
synapse_0 = 2*np.random.random((input_dim,hidden_dim)) - 1
synapse_1 = 2*np.random.random((hidden_dim,output_dim)) - 1
synapse_h = 2*np.random.random((hidden_dim,hidden_dim)) - 1

synapse_0_update = np.zeros_like(synapse_0)
synapse_1_update = np.zeros_like(synapse_1)
synapse_h_update = np.zeros_like(synapse_h)

# training logic
for j in range(10000):
   
    # generate a simple addition problem (a + b = c)
    a_int = np.random.randint(largest_number/2) # int version
    a = int2binary # binary encoding

    b_int = np.random.randint(largest_number/2) # int version
    b = int2binary # binary encoding

    # true answer
    c_int = a_int + b_int
    c = int2binary
   
    # where we'll store our best guess (binary encoded)
    d = np.zeros_like(c)

    overallError = 0
   
    layer_2_deltas = list()
    layer_1_values = list()
    layer_1_values.append(np.zeros(hidden_dim))
   
    # moving along the positions in the binary encoding
    for position in range(binary_dim):
      
      # generate input and output
      X = np.array([,b]])
      y = np.array([]]).T

      # hidden layer (input ~+ prev_hidden)
      layer_1 = sigmoid(np.dot(X,synapse_0) + np.dot(layer_1_values[-1],synapse_h))

      # output layer (new binary representation)
      layer_2 = sigmoid(np.dot(layer_1,synapse_1))

      # did we miss?... if so by how much?
      layer_2_error = y - layer_2
      layer_2_deltas.append((layer_2_error)*sigmoid_output_to_derivative(layer_2))
      overallError += np.abs(layer_2_error)
   
      # decode estimate so we can print it out
      d = np.round(layer_2)
      
      # store hidden layer so we can use it in the next timestep
      layer_1_values.append(copy.deepcopy(layer_1))
   
    future_layer_1_delta = np.zeros(hidden_dim)
   
    for position in range(binary_dim):
      
      X = np.array([,b]])
      layer_1 = layer_1_values[-position-1]
      prev_layer_1 = layer_1_values[-position-2]
      
      # error at output layer
      layer_2_delta = layer_2_deltas[-position-1]
      # error at hidden layer
      layer_1_delta = (future_layer_1_delta.dot(synapse_h.T) + \
            layer_2_delta.dot(synapse_1.T)) * sigmoid_output_to_derivative(layer_1)
      # let's update all our weights so we can try again
      synapse_1_update += np.atleast_2d(layer_1).T.dot(layer_2_delta)
      synapse_h_update += np.atleast_2d(prev_layer_1).T.dot(layer_1_delta)
      synapse_0_update += X.T.dot(layer_1_delta)
      
      future_layer_1_delta = layer_1_delta
   

    synapse_0 += synapse_0_update * alpha
    synapse_1 += synapse_1_update * alpha
    synapse_h += synapse_h_update * alpha   

    synapse_0_update *= 0
    synapse_1_update *= 0
    synapse_h_update *= 0
   
    # print out progress
    if(j % 1000 == 0):
      print "Error:" + str(overallError)
      print "Pred:" + str(d)
      print "True:" + str(c)
      out = 0
      for index,x in enumerate(reversed(d)):
            out += x*pow(2,index)
      print str(a_int) + " + " + str(b_int) + " = " + str(out)
      print "------------"

露转溪桥 发表于 2018-9-4 17:13:41

代码是用python2写的,你运行的是python3吧,把最下面几行的print语句后面都加上括号就好了。
如:
print ("Error:" + str(overallError))
      print ("Pred:" + str(d))
      print ("True:" + str(c))
      out = 0
      for index,x in enumerate(reversed(d)):
            out += x*pow(2,index)
      print (str(a_int) + " + " + str(b_int) + " = " + str(out))
      print ("------------")

一介萌新 发表于 2018-9-4 17:20:53

露转溪桥 发表于 2018-9-4 17:13
代码是用python2写的,你运行的是python3吧,把最下面几行的print语句后面都加上括号就好了。
如:
print ...

哦哦,之前一直用的是python2,今天刚改用python3,怪不得,谢谢{:5_106:}
页: [1]
查看完整版本: 奇怪的bug,是我的环境问题还是代码问题,有人能帮忙看一下吗,基础薄弱的菜鸟求助..