求全部的代码
Description写一个判断素数的函数,在主函数输入一个整数,输出是否是素数的消息。
Input
一个数(<=1000)
Output
如果是素数输出prime 如果不是输出not prime
Description
求π的近似值,计算公式为π/4=1-1/3+1/5-1/7+...,直到当前项的绝对值恰好小于(10^-n)为止(该项不计入总和)。
Input
输入n。(1<=n<=8)
多组测试数据。
Output
输出π的值。
def prime(n):
flag = 1
for i in range(2,int(n/2)):
if n % i == 0 :
flag = 0
return flag
import prime_judge
n = input ("input an integer less than 1000:")
n = int(n)
if n <= 1000:
if prime_judge.prime(n):
print ("%d is a prime"%(n))
else :
print ("%d is not a prime"%(n))
else:
print("%d is bigger than 1000"%(n))
求π(pi)的近似值看成求n的近似值,搞了好久都不对啊,很难受。改成求pi的近似值很快就算出来了。以下是代码
n = input ("input an number n that 1 <= n <= 8 :")
n = int(n)
pi = 1
i = 1
j = 1
while abs(1/i) >= 10**(-n):
i += 2
j += 1
if j % 2 == 0 :
pi -= 1/i
else :
pi += 1/i
pi = pi * 4
print(pi)
print(j)
顺便把测试结果也发一下好了
=========== RESTART: F:/python3/file cord/Approximate summation.py ===========
input an number n that 1 <= n <= 8 :1
2.9760461760461765
6
>>>
=========== RESTART: F:/python3/file cord/Approximate summation.py ===========
input an number n that 1 <= n <= 8 :2
3.1611986129870506
51
>>>
=========== RESTART: F:/python3/file cord/Approximate summation.py ===========
input an number n that 1 <= n <= 8 :3
3.143588659585789
501
>>>
=========== RESTART: F:/python3/file cord/Approximate summation.py ===========
input an number n that 1 <= n <= 8 :4
3.1417926135957908
5001
>>>
=========== RESTART: F:/python3/file cord/Approximate summation.py ===========
input an number n that 1 <= n <= 8 :5
3.141612653189785
50001
>>>
=========== RESTART: F:/python3/file cord/Approximate summation.py ===========
input an number n that 1 <= n <= 8 :6
3.1415946535856922
500001
>>>
=========== RESTART: F:/python3/file cord/Approximate summation.py ===========
input an number n that 1 <= n <= 8 :7
3.1415928535897395
5000001
>>>
=========== RESTART: F:/python3/file cord/Approximate summation.py ===========
input an number n that 1 <= n <= 8 :8
3.1415926735902504
50000001
>>> 杨扬阳羊洋 发表于 2019-3-31 12:19
求π(pi)的近似值看成求n的近似值,搞了好久都不对啊,很难受。改成求pi的近似值很快就算出来了。以下是 ...
感谢 杨扬阳羊洋 发表于 2019-3-31 10:38
感谢 大佬
页:
[1]