愿你 发表于 2020-4-1 10:11:33

关于rpc的问题~

xmlrpc.client.Fault: <Fault 1: "<class 'xml.parsers.expat.ExpatError'>:not well-formed (invalid token): line 6, column 89">
有人遇到这种问题嘛~
我把详细代码附在评论区

愿你 发表于 2020-4-1 10:16:07

服务端:import cv2
import os
import sys
import numpy as np
import tensorflow as tf

car_plate_w,car_plate_h = 136,36
char_w,char_h = 20,20
char_table = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K',
            'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', '川', '鄂', '赣', '甘', '贵',
            '桂', '黑', '沪', '冀', '津', '京', '吉', '辽', '鲁', '蒙', '闽', '宁', '青', '琼', '陕', '苏', '晋',
            '皖', '湘', '新', '豫', '渝', '粤', '云', '藏', '浙']

def hist_image(img):
    assert img.ndim==2
    hist =
    img_h,img_w = img.shape,img.shape

    for row in range(img_h):
      for col in range(img_w):
            hist] += 1
    p = /(img_w*img_h) for n in range(256)]
    p1 = np.cumsum(p)
    for row in range(img_h):
      for col in range(img_w):
            v = img
            img = p1*255
    return img

def find_board_area(img):
    assert img.ndim==2
    img_h,img_w = img.shape,img.shape
    top,bottom,left,right = 0,img_h,0,img_w
    flag = False
    h_proj =
    v_proj =

    for row in range(round(img_h*0.5),round(img_h*0.8),3):
      for col in range(img_w):
            if img==255:
                h_proj += 1
      if flag==False and h_proj>12:
            flag = True
            top = row
      if flag==True and row>top+8 and h_proj<12:
            bottom = row
            flag = False

    for col in range(round(img_w*0.3),img_w,1):
      for row in range(top,bottom,1):
            if img==255:
                v_proj += 1
      if flag==False and (v_proj>10 or v_proj-v_proj>5):
            left = col
            break
    return left,top,120,bottom-top-10

def verify_scale(rotate_rect):
   error = 0.4
   aspect = 4#4.7272
   min_area = 10*(10*aspect)
   max_area = 150*(150*aspect)
   min_aspect = aspect*(1-error)
   max_aspect = aspect*(1+error)
   theta = 30

   # 宽或高为0,不满足矩形直接返回False
   if rotate_rect==0 or rotate_rect==0:
       return False

   r = rotate_rect/rotate_rect
   r = max(r,1/r)
   area = rotate_rect*rotate_rect
   if area>min_area and area<max_area and r>min_aspect and r<max_aspect:
       # 矩形的倾斜角度在不超过theta
       if ((rotate_rect < rotate_rect and rotate_rect >= -90 and rotate_rect < -(90 - theta)) or
               (rotate_rect < rotate_rect and rotate_rect > -theta and rotate_rect <= 0)):
         return True
   return False

def img_Transform(car_rect,image):
    img_h,img_w = image.shape[:2]
    rect_w,rect_h = car_rect,car_rect
    angle = car_rect

    return_flag = False
    if car_rect==0:
      return_flag = True
    if car_rect==-90 and rect_w<rect_h:
      rect_w, rect_h = rect_h, rect_w
      return_flag = True
    if return_flag:
      car_img = image-rect_h/2):int(car_rect+rect_h/2),
                  int(car_rect-rect_w/2):int(car_rect+rect_w/2)]
      return car_img

    car_rect = (car_rect,(rect_w,rect_h),angle)
    box = cv2.boxPoints(car_rect)

    heigth_point = right_point =
    left_point = low_point = , car_rect]
    for point in box:
      if left_point > point:
            left_point = point
      if low_point > point:
            low_point = point
      if heigth_point < point:
            heigth_point = point
      if right_point < point:
            right_point = point

    if left_point <= right_point:# 正角度
      new_right_point = , heigth_point]
      pts1 = np.float32()
      pts2 = np.float32()# 字符只是高度需要改变
      M = cv2.getAffineTransform(pts1, pts2)
      dst = cv2.warpAffine(image, M, (round(img_w*2), round(img_h*2)))
      car_img = dst):int(heigth_point), int(left_point):int(new_right_point)]

    elif left_point > right_point:# 负角度
      new_left_point = , heigth_point]
      pts1 = np.float32()
      pts2 = np.float32()# 字符只是高度需要改变
      M = cv2.getAffineTransform(pts1, pts2)
      dst = cv2.warpAffine(image, M, (round(img_w*2), round(img_h*2)))
      car_img = dst):int(heigth_point), int(new_left_point):int(right_point)]

    return car_img

def pre_process(orig_img):

    gray_img = cv2.cvtColor(orig_img, cv2.COLOR_BGR2GRAY)
    # cv2.imshow('gray_img', gray_img)
    # cv2.waitKey(0)

    blur_img = cv2.blur(gray_img, (3, 3))
    # cv2.imshow('blur', blur_img)
    # cv2.waitKey(0)

    sobel_img = cv2.Sobel(blur_img, cv2.CV_16S, 1, 0, ksize=3)
    sobel_img = cv2.convertScaleAbs(sobel_img)
    # cv2.imshow('sobel', sobel_img)
    # cv2.waitKey(0)

    hsv_img = cv2.cvtColor(orig_img, cv2.COLOR_BGR2HSV)
    # cv2.imshow('hsv', hsv_img)
    # cv2.waitKey(0)

    h, s, v = hsv_img[:, :, 0], hsv_img[:, :, 1], hsv_img[:, :, 2]
    # 黄色色调区间,蓝色色调区间:
    blue_img = (((h > 26) & (h < 34)) | ((h > 100) & (h < 124))) & (s > 70) & (v > 70)
    blue_img = blue_img.astype('float32')
    # cv2.imshow('blue', blue_img)
    # cv2.waitKey(0)

    mix_img = np.multiply(sobel_img, blue_img)
    # cv2.imshow('mix', mix_img)
    # cv2.waitKey(0)


    mix_img = mix_img.astype(np.uint8)

    ret, binary_img = cv2.threshold(mix_img, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)
    # cv2.imshow('binary',binary_img)
    # cv2.waitKey(0)

    kernel = cv2.getStructuringElement(cv2.MORPH_RECT,(21,5))
    close_img = cv2.morphologyEx(binary_img, cv2.MORPH_CLOSE, kernel)
    # cv2.imshow('close', close_img)
    # cv2.waitKey(0)

    return close_img

# 给候选车牌区域做漫水填充算法,一方面补全上一步求轮廓可能存在轮廓歪曲的问题,
# 另一方面也可以将非车牌区排除掉
def verify_color(rotate_rect,src_image):
    img_h,img_w = src_image.shape[:2]
    mask = np.zeros(shape=,dtype=np.uint8)
    connectivity = 4 #种子点上下左右4邻域与种子颜色值在的被涂成new_value,也可设置8邻域
    loDiff,upDiff = 30,30
    new_value = 255
    flags = connectivity
    flags |= cv2.FLOODFILL_FIXED_RANGE#考虑当前像素与种子象素之间的差,不设置的话则和邻域像素比较
    flags |= new_value << 8
    flags |= cv2.FLOODFILL_MASK_ONLY #设置这个标识符则不会去填充改变原始图像,而是去填充掩模图像(mask)

    rand_seed_num = 5000 #生成多个随机种子
    valid_seed_num = 200 #从rand_seed_num中随机挑选valid_seed_num个有效种子
    adjust_param = 0.1
    box_points = cv2.boxPoints(rotate_rect)
    box_points_x = for n in box_points]
    box_points_x.sort(reverse=False)
    adjust_x = int((box_points_x-box_points_x)*adjust_param)
    col_range = +adjust_x,box_points_x-adjust_x]
    box_points_y = for n in box_points]
    box_points_y.sort(reverse=False)
    adjust_y = int((box_points_y-box_points_y)*adjust_param)
    row_range = +adjust_y, box_points_y-adjust_y]
    # 如果以上方法种子点在水平或垂直方向可移动的范围很小,则采用旋转矩阵对角线来设置随机种子点
    if (col_range-col_range)/(box_points_x-box_points_x)<0.4\
      or (row_range-row_range)/(box_points_y-box_points_y)<0.4:
      points_row = []
      points_col = []
      for i in range(2):
            pt1,pt2 = box_points,box_points
            x_adjust,y_adjust = int(adjust_param*(abs(pt1-pt2))),int(adjust_param*(abs(pt1-pt2)))
            if (pt1 <= pt2):
                pt1, pt2 = pt1 + x_adjust, pt2 - x_adjust
            else:
                pt1, pt2 = pt1 - x_adjust, pt2 + x_adjust
            if (pt1 <= pt2):
                pt1, pt2 = pt1 + adjust_y, pt2 - adjust_y
            else:
                pt1, pt2 = pt1 - y_adjust, pt2 + y_adjust
            temp_list_x = ,pt2,int(rand_seed_num /2))]
            temp_list_y = ,pt2,int(rand_seed_num /2))]
            points_col.extend(temp_list_x)
            points_row.extend(temp_list_y)
    else:
      points_row = np.random.randint(row_range,row_range,size=rand_seed_num)
      points_col = np.linspace(col_range,col_range,num=rand_seed_num).astype(np.int)

    points_row = np.array(points_row)
    points_col = np.array(points_col)
    hsv_img = cv2.cvtColor(src_image, cv2.COLOR_BGR2HSV)
    h,s,v = hsv_img[:,:,0],hsv_img[:,:,1],hsv_img[:,:,2]
    # 将随机生成的多个种子依次做漫水填充,理想情况是整个车牌被填充
    flood_img = src_image.copy()
    seed_cnt = 0
    for i in range(rand_seed_num):
      rand_index = np.random.choice(rand_seed_num,1,replace=False)
      row,col = points_row,points_col
      # 限制随机种子必须是车牌背景色
      if (((h>26)&(h<34))|((h>100)&(h<124)))&(s>70)&(v>70):
            cv2.floodFill(src_image, mask, (col,row), (255, 255, 255), (loDiff,) * 3, (upDiff,) * 3, flags)
            cv2.circle(flood_img,center=(col,row),radius=2,color=(0,0,255),thickness=2)
            seed_cnt += 1
            if seed_cnt >= valid_seed_num:
                break
    #======================调试用======================#
    show_seed = np.random.uniform(1,100,1).astype(np.uint16)
    cv2.imshow('floodfill'+str(show_seed),flood_img)
    cv2.imshow('flood_mask'+str(show_seed),mask)
    #======================调试用======================#
    # 获取掩模上被填充点的像素点,并求点集的最小外接矩形
    mask_points = []
    for row in range(1,img_h+1):
      for col in range(1,img_w+1):
            if mask != 0:
                mask_points.append((col-1,row-1))
    mask_rotateRect = cv2.minAreaRect(np.array(mask_points))
    if verify_scale(mask_rotateRect):
      return True,mask_rotateRect
    else:
      return False,mask_rotateRect

# 车牌定位
def locate_carPlate(orig_img,pred_image):
    carPlate_list = []
    temp1_orig_img = orig_img.copy() #调试用
    temp2_orig_img = orig_img.copy() #调试用
    cloneImg,contours,heriachy = cv2.findContours(pred_image,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
    for i,contour in enumerate(contours):
      cv2.drawContours(temp1_orig_img, contours, i, (0, 255, 255), 2)
      # 获取轮廓最小外接矩形,返回值rotate_rect
      rotate_rect = cv2.minAreaRect(contour)
      # 根据矩形面积大小和长宽比判断是否是车牌
      if verify_scale(rotate_rect):
            ret,rotate_rect2 = verify_color(rotate_rect,temp2_orig_img)
            if ret == False:
                continue
            # 车牌位置矫正
            car_plate = img_Transform(rotate_rect2, temp2_orig_img)
            car_plate = cv2.resize(car_plate,(car_plate_w,car_plate_h)) #调整尺寸为后面CNN车牌识别做准备
            #========================调试看效果========================#
            box = cv2.boxPoints(rotate_rect2)
            for k in range(4):
                n1,n2 = k%4,(k+1)%4
                cv2.line(temp1_orig_img,(box,box),(box,box),(255,0,0),2)
            cv2.imshow('opencv_' + str(i), car_plate)
            #========================调试看效果========================#
            carPlate_list.append(car_plate)

    cv2.imshow('contour', temp1_orig_img)
    return carPlate_list

# 左右切割
def horizontal_cut_chars(plate):
    char_addr_list = []
    area_left,area_right,char_left,char_right= 0,0,0,0
    img_w = plate.shape

    # 获取车牌每列边缘像素点个数
    def getColSum(img,col):
      sum = 0
      for i in range(img.shape):
            sum += round(img/255)
      return sum;

    sum = 0
    for col in range(img_w):
      sum += getColSum(plate,col)
    # 每列边缘像素点必须超过均值的60%才能判断属于字符区域
    col_limit = 0#round(0.5*sum/img_w)
    # 每个字符宽度也进行限制
    charWid_limit =
    is_char_flag = False

    for i in range(img_w):
      colValue = getColSum(plate,i)
      if colValue > col_limit:
            if is_char_flag == False:
                area_right = round((i+char_right)/2)
                area_width = area_right-area_left
                char_width = char_right-char_left
                if (area_width>charWid_limit) and (area_width<charWid_limit):
                  char_addr_list.append((area_left,area_right,char_width))
                char_left = i
                area_left = round((char_left+char_right) / 2)
                is_char_flag = True
      else:
            if is_char_flag == True:
                char_right = i-1
                is_char_flag = False
    # 手动结束最后未完成的字符分割
    if area_right < char_left:
      area_right,char_right = img_w,img_w
      area_width = area_right - area_left
      char_width = char_right - char_left
      if (area_width > charWid_limit) and (area_width < charWid_limit):
            char_addr_list.append((area_left, area_right, char_width))
    return char_addr_list

def get_chars(car_plate):
    img_h,img_w = car_plate.shape[:2]
    h_proj_list = [] # 水平投影长度列表
    h_temp_len,v_temp_len = 0,0
    h_startIndex,h_end_index = 0,0 # 水平投影记索引
    h_proj_limit = # 车牌在水平方向得轮廓长度少于20%或多余80%过滤掉
    char_imgs = []

    # 将二值化的车牌水平投影到Y轴,计算投影后的连续长度,连续投影长度可能不止一段
    h_count =
    for row in range(img_h):
      temp_cnt = 0
      for col in range(img_w):
            if car_plate == 255:
                temp_cnt += 1
      h_count = temp_cnt
      if temp_cnt/img_w<h_proj_limit or temp_cnt/img_w>h_proj_limit:
            if h_temp_len != 0:
                h_end_index = row-1
                h_proj_list.append((h_startIndex,h_end_index))
                h_temp_len = 0
            continue
      if temp_cnt > 0:
            if h_temp_len == 0:
                h_startIndex = row
                h_temp_len = 1
            else:
                h_temp_len += 1
      else:
            if h_temp_len > 0:
                h_end_index = row-1
                h_proj_list.append((h_startIndex,h_end_index))
                h_temp_len = 0

    # 手动结束最后得水平投影长度累加
    if h_temp_len != 0:
      h_end_index = img_h-1
      h_proj_list.append((h_startIndex, h_end_index))
    # 选出最长的投影,该投影长度占整个截取车牌高度的比值必须大于0.5
    h_maxIndex,h_maxHeight = 0,0
    for i,(start,end) in enumerate(h_proj_list):
      if h_maxHeight < (end-start):
            h_maxHeight = (end-start)
            h_maxIndex = i
    if h_maxHeight/img_h < 0.5:
      return char_imgs
    chars_top,chars_bottom = h_proj_list,h_proj_list

    plates = car_plate
    cv2.imwrite('carIdentityData/opencv_output/car.jpg', car_plate)
    cv2.imwrite('carIdentityData/opencv_output/plate.jpg', plates)
    char_addr_list = horizontal_cut_chars(plates)

    for i,addr in enumerate(char_addr_list):
      char_img = car_plate:addr]
      char_img = cv2.resize(char_img,(char_w,char_h))
      char_imgs.append(char_img)
    return char_imgs

def extract_char(car_plate):
    gray_plate = cv2.cvtColor(car_plate,cv2.COLOR_BGR2GRAY)
    ret,binary_plate = cv2.threshold(gray_plate,0,255,cv2.THRESH_BINARY|cv2.THRESH_OTSU)
    char_img_list = get_chars(binary_plate)
    return char_img_list

def cnn_select_carPlate(plate_list,model_path):
    if len(plate_list) == 0:
      return False,plate_list
    g1 = tf.Graph()
    sess1 = tf.Session(graph=g1)
    with sess1.as_default():
      with sess1.graph.as_default():
            model_dir = os.path.dirname(model_path)
            saver = tf.train.import_meta_graph(model_path)
            saver.restore(sess1, tf.train.latest_checkpoint(model_dir))
            graph = tf.get_default_graph()
            net1_x_place = graph.get_tensor_by_name('x_place:0')
            net1_keep_place = graph.get_tensor_by_name('keep_place:0')
            net1_out = graph.get_tensor_by_name('out_put:0')

            input_x = np.array(plate_list)
            net_outs = tf.nn.softmax(net1_out)
            preds = tf.argmax(net_outs,1) #预测结果
            probs = tf.reduce_max(net_outs,reduction_indices=) #结果概率值
            pred_list,prob_list = sess1.run(,feed_dict={net1_x_place:input_x,net1_keep_place:1.0})
            # 选出概率最大的车牌
            result_index,result_prob = -1,0.
            for i,pred in enumerate(pred_list):
                if pred==1 and prob_list>result_prob:
                  result_index,result_prob = i,prob_list
            if result_index == -1:
                return False,plate_list
            else:
                return True,plate_list

def cnn_recongnize_char(img_list,model_path):
    g2 = tf.Graph()
    sess2 = tf.Session(graph=g2)
    text_list = []
    pro_list = []

    if len(img_list) == 0:
      return text_list
    with sess2.as_default():
      with sess2.graph.as_default():
            model_dir = os.path.dirname(model_path)
            saver = tf.train.import_meta_graph(model_path)
            saver.restore(sess2, tf.train.latest_checkpoint(model_dir))
            graph = tf.get_default_graph()
            net2_x_place = graph.get_tensor_by_name('x_place:0')
            net2_keep_place = graph.get_tensor_by_name('keep_place:0')
            net2_out = graph.get_tensor_by_name('out_put:0')

            data = np.array(img_list)
            # 数字、字母、汉字,从67维向量找到概率最大的作为预测结果
            net_out = tf.nn.softmax(net2_out)
            preds = tf.argmax(net_out,1)
            probs = tf.reduce_max(net_out, reduction_indices=)# 结果概率值
            my_preds,my_probs= sess2.run(, feed_dict={net2_x_place: data, net2_keep_place: 1.0})
            # print(my_preds)
            print(my_probs)
            for i in my_preds:
                text_list.append(char_table)
            prob = 0
            for i in my_probs:
                prob = prob + i
            prob=prob/len(my_probs)
            return text_list,prob

# if __name__ == '__main__':
#   cur_dir = sys.path
#   car_plate_w,car_plate_h = 136,36
#   char_w,char_h = 20,20
#   plate_model_path = os.path.join(cur_dir, './carIdentityData/model/plate_recongnize/model.ckpt-510.meta')
#   char_model_path = os.path.join(cur_dir,'./carIdentityData/model/char_recongnize/model.ckpt-520.meta')
#   img = cv2.imread('carIdentityData/images/43.jpg')
#
#   # 预处理
#   pred_img = pre_process(img)
#   # cv2.imshow('pred_img', pred_img)
#   # cv2.waitKey(0)
#
#   # 车牌定位
#   car_plate_list = locate_carPlate(img,pred_img)
#
#   # CNN车牌过滤
#   ret,car_plate = cnn_select_carPlate(car_plate_list,plate_model_path)
#   if ret == False:
#         print("未检测到车牌")
#         sys.exit(-1)
#   # cv2.imshow('cnn_plate',car_plate)
#   # cv2.waitKey(0)
#
#   # 字符提取
#   char_img_list = extract_char(car_plate)
#   print(len(char_img_list))
#   # CNN字符识别
#   text,pro = cnn_recongnize_char(char_img_list,char_model_path)
#   print(text)
#   print(pro)
def recognizePlatestr(src):
    cur_dir = sys.path
    car_plate_w,car_plate_h = 136,36
    char_w,char_h = 20,20
    plate_model_path = os.path.join(cur_dir, './carIdentityData/model/plate_recongnize/model.ckpt-510.meta')
    char_model_path = os.path.join(cur_dir,'./carIdentityData/model/char_recongnize/model.ckpt-520.meta')
    # img = cv2.imread('./carIdentityData/images/32.jpg')
    img = cv2.imread(src)

    # 预处理
    pred_img = pre_process(img)
    # cv2.imshow('pred_img', pred_img)
    # cv2.waitKey(0)

    # 车牌定位
    car_plate_list = locate_carPlate(img,pred_img)

    # CNN车牌过滤
    ret,car_plate = cnn_select_carPlate(car_plate_list,plate_model_path)
    if ret == False:
      print("未检测到车牌")
      sys.exit(-1)
    # 字符提取
    char_img_list = extract_char(car_plate)
    print(len(char_img_list))
    # CNN字符识别
    text,confidence = cnn_recongnize_char(char_img_list,char_model_path)
    confidence = str(round(confidence, 3))
    str1 = ''.join(text)
    laststr = str1 + "#" + confidence
    return laststr

from xmlrpc.server import SimpleXMLRPCServer
server = SimpleXMLRPCServer(('localhost', 8888)) # 初始化
server.register_function(recognizePlatestr, "get_platestr") # 注册函数
print ("Listening for Client")
server.serve_forever() # 保持等待调用状态

客户端:
from xmlrpc.client import ServerProxy

server = ServerProxy("http://localhost:8888") # 初始化服务器
path = 'D:\pycharm\djangocode\project6\myApp\plateRecognize\carIdentityData\images\23.jpg'
print(server.get_platestr(path))
platestr=server.get_platestr(path)
print("222")

_2_ 发表于 2020-4-1 10:20:34

愿你 发表于 2020-4-1 10:16
服务端:

客户端:

好长……

愿你 发表于 2020-4-1 10:26:23

_2_ 发表于 2020-4-1 10:20
好长……

服务端只要看最后那几行就好了~
我单在文件里独运行那个recognizePlatestr,是能够有结果的。
如下:
str = recognizePlatestr('./carIdentityData/images/23.jpg')
print(str)

但是我远程调用就不行了 不知道为什么
页: [1]
查看完整版本: 关于rpc的问题~