New_Stars 发表于 2020-8-9 18:22:54

为什么自己写的代码运行成功,却突然未影响

这是我自己创的代码,运行的了,但有些是错误的,却不知怎么改,绞尽脑汁也没想到
以下就是代码:

from __future__ import division

import sys
import math
import random
import time

from collections import deque
from pyglet import image
from pyglet.gl import *
from pyglet.graphics import TextureGroup
from pyglet.window import key, mouse

# 每秒帧数
TICKS_PER_SEC = 60

# 砖块大小
SECTOR_SIZE = 16

# 行走速度与飞行速度
WALKING_SPEED = 5
FLYING_SPEED = 15

# 重力与跳跃高度
GRAVITY = 20.0
MAX_JUMP_HEIGHT = 1.0

# About the height of a block.
# To derive the formula for calculating jump speed, first solve
#    v_t = v_0 + a * t
# for the time at which you achieve maximum height, where a is the acceleration
# due to gravity and v_t = 0. This gives:
#    t = - v_0 / a
# Use t and the desired MAX_JUMP_HEIGHT to solve for v_0 (jump speed) in
#    s = s_0 + v_0 * t + (a * t^2) / 2
JUMP_SPEED = math.sqrt(2 * GRAVITY * MAX_JUMP_HEIGHT)
TERMINAL_VELOCITY = 50

PLAYER_HEIGHT = 2

if sys.version_info >= 3:
    xrange = range

def cube_vertices(x, y, z, n):
    """ Return the vertices of the cube at position x, y, z with size 2*n.

    """
    return [
      x-n,y+n,z-n, x-n,y+n,z+n, x+n,y+n,z+n, x+n,y+n,z-n,# top
      x-n,y-n,z-n, x+n,y-n,z-n, x+n,y-n,z+n, x-n,y-n,z+n,# bottom
      x-n,y-n,z-n, x-n,y-n,z+n, x-n,y+n,z+n, x-n,y+n,z-n,# left
      x+n,y-n,z+n, x+n,y-n,z-n, x+n,y+n,z-n, x+n,y+n,z+n,# right
      x-n,y-n,z+n, x+n,y-n,z+n, x+n,y+n,z+n, x-n,y+n,z+n,# front
      x+n,y-n,z-n, x-n,y-n,z-n, x-n,y+n,z-n, x+n,y+n,z-n,# back
    ]


def tex_coord(x, y, n=4):
    """
    Return the bounding vertices of the texture square.

    """
    m = 1.0 / n
    dx = x * m
    dy = y * m
    return dx, dy, dx + m, dy, dx + m, dy + m, dx, dy + m


def tex_coords(top, bottom, side):
    """
    Return a list of the texture squares for the top, bottom and side.

    """
    top = tex_coord(*top)
    bottom = tex_coord(*bottom)
    side = tex_coord(*side)
    result = []
    result.extend(top)
    result.extend(bottom)
    result.extend(side * 4)
    return result


TEXTURE_PATH = 'texture.png'

GRASS = tex_coords((1, 0), (0, 1), (0, 0))
SAND = tex_coords((1, 1), (1, 1), (1, 1))
BRICK = tex_coords((2, 0), (2, 0), (2, 0))
STONE = tex_coords((2, 1), (2, 1), (2, 1))

FACES = [
    ( 0, 1, 0),
    ( 0,-1, 0),
    (-1, 0, 0),
    ( 1, 0, 0),
    ( 0, 0, 1),
    ( 0, 0,-1),
]


def normalize(position):
    """ Accepts `position` of arbitrary precision and returns the block
    containing that position.

    Parameters
    ----------
    position : tuple of len 3

    Returns
    -------
    block_position : tuple of ints of len 3

    """
    x, y, z = position
    x, y, z = (int(round(x)), int(round(y)), int(round(z)))
    return (x, y, z)


def sectorize(position):
    """ Returns a tuple representing the sector for the given `position`.

    Parameters
    ----------
    position : tuple of len 3

    Returns
    -------
    sector : tuple of len 3

    """
    x, y, z = normalize(position)
    x, y, z = x // SECTOR_SIZE, y // SECTOR_SIZE, z // SECTOR_SIZE
    return (x, 0, z)


class Model(object):

    def __init__(self):

      # A Batch is a collection of vertex lists for batched rendering.
      self.batch = pyglet.graphics.Batch()

      # A TextureGroup manages an OpenGL texture.
      self.group = TextureGroup(image.load(TEXTURE_PATH).get_texture())

      # A mapping from position to the texture of the block at that position.
      # This defines all the blocks that are currently in the world.
      self.world = {}

      # Same mapping as `world` but only contains blocks that are shown.
      self.shown = {}

      # Mapping from position to a pyglet `VertextList` for all shown blocks.
      self._shown = {}

      # Mapping from sector to a list of positions inside that sector.
      self.sectors = {}

      # Simple function queue implementation. The queue is populated with
      # _show_block() and _hide_block() calls
      self.queue = deque()

      self._initialize()

    def _initialize(self):
      """ Initialize the world by placing all the blocks.

      """
      n = 80# 1/2 width and height of world
      s = 1# step size
      y = 0# initial y height
      for x in xrange(-n, n + 1, s):
            for z in xrange(-n, n + 1, s):
                # create a layer stone an grass everywhere.
                self.add_block((x, y - 2, z), GRASS, immediate=False)
                self.add_block((x, y - 3, z), STONE, immediate=False)
                if x in (-n, n) or z in (-n, n):
                  # create outer walls.
                  for dy in xrange(-2, 3):
                        self.add_block((x, y + dy, z), STONE, immediate=False)

      # generate the hills randomly
      o = n - 10
      for _ in xrange(120):
            a = random.randint(-o, o)# x position of the hill
            b = random.randint(-o, o)# z position of the hill
            c = -1# base of the hill
            h = random.randint(1, 6)# height of the hill
            s = random.randint(4, 8)# 2 * s is the side length of the hill
            d = 1# how quickly to taper off the hills
            t = random.choice()
            for y in xrange(c, c + h):
                for x in xrange(a - s, a + s + 1):
                  for z in xrange(b - s, b + s + 1):
                        if (x - a) ** 2 + (z - b) ** 2 > (s + 1) ** 2:
                            continue
                        if (x - 0) ** 2 + (z - 0) ** 2 < 5 ** 2:
                            continue
                        self.add_block((x, y, z), t, immediate=False)
                s -= d# decrement side lenth so hills taper off

    def hit_test(self, position, vector, max_distance=8):
      """ Line of sight search from current position. If a block is
      intersected it is returned, along with the block previously in the line
      of sight. If no block is found, return None, None.

      Parameters
      ----------
      position : tuple of len 3
            The (x, y, z) position to check visibility from.
      vector : tuple of len 3
            The line of sight vector.
      max_distance : int
            How many blocks away to search for a hit.

      """
      m = 8
      x, y, z = position
      dx, dy, dz = vector
      previous = None
      for _ in xrange(max_distance * m):
            key = normalize((x, y, z))
            if key != previous and key in self.world:
                return key, previous
            previous = key
            x, y, z = x + dx / m, y + dy / m, z + dz / m
      return None, None

    def exposed(self, position):
      """ Returns False is given `position` is surrounded on all 6 sides by
      blocks, True otherwise.

      """
      x, y, z = position
      for dx, dy, dz in FACES:
            if (x + dx, y + dy, z + dz) not in self.world:
                return True
      return False

    def add_block(self, position, texture, immediate=True):
      """ Add a block with the given `texture` and `position` to the world.

      Parameters
      ----------
      position : tuple of len 3
            The (x, y, z) position of the block to add.
      texture : list of len 3
            The coordinates of the texture squares. Use `tex_coords()` to
            generate.
      immediate : bool
            Whether or not to draw the block immediately.

      """
      if position in self.world:
            self.remove_block(position, immediate)
      self.world = texture
      self.sectors.setdefault(sectorize(position), []).append(position)
      if immediate:
            if self.exposed(position):
                self.show_block(position)
            self.check_neighbors(position)

    def remove_block(self, position, immediate=True):
      """ Remove the block at the given `position`.

      Parameters
      ----------
      position : tuple of len 3
            The (x, y, z) position of the block to remove.
      immediate : bool
            Whether or not to immediately remove block from canvas.

      """
      del self.world
      self.sectors.remove(position)
      if immediate:
            if position in self.shown:
                self.hide_block(position)
            self.check_neighbors(position)

    def check_neighbors(self, position):
      """ Check all blocks surrounding `position` and ensure their visual
      state is current. This means hiding blocks that are not exposed and
      ensuring that all exposed blocks are shown. Usually used after a block
      is added or removed.

      """
      x, y, z = position
      for dx, dy, dz in FACES:
            key = (x + dx, y + dy, z + dz)
            if key not in self.world:
                continue
            if self.exposed(key):
                if key not in self.shown:
                  self.show_block(key)
            else:
                if key in self.shown:
                  self.hide_block(key)

    def show_block(self, position, immediate=True):
      """ Show the block at the given `position`. This method assumes the
      block has already been added with add_block()

      Parameters
      ----------
      position : tuple of len 3
            The (x, y, z) position of the block to show.
      immediate : bool
            Whether or not to show the block immediately.

      """
      texture = self.world
      self.shown = texture
      if immediate:
            self._show_block(position, texture)
      else:
            self._enqueue(self._show_block, position, texture)

    def _show_block(self, position, texture):
      """ Private implementation of the `show_block()` method.

      Parameters
      ----------
      position : tuple of len 3
            The (x, y, z) position of the block to show.
      texture : list of len 3
            The coordinates of the texture squares. Use `tex_coords()` to
            generate.

      """
      x, y, z = position
      vertex_data = cube_vertices(x, y, z, 0.5)
      texture_data = list(texture)
      # create vertex list
      # FIXME Maybe `add_indexed()` should be used instead
      self._shown = self.batch.add(24, GL_QUADS, self.group,
            ('v3f/static', vertex_data),
            ('t2f/static', texture_data))

    def hide_block(self, position, immediate=True):
      """ Hide the block at the given `position`. Hiding does not remove the
      block from the world.

      Parameters
      ----------
      position : tuple of len 3
            The (x, y, z) position of the block to hide.
      immediate : bool
            Whether or not to immediately remove the block from the canvas.

      """
      self.shown.pop(position)
      if immediate:
            self._hide_block(position)
      else:
            self._enqueue(self._hide_block, position)

    def _hide_block(self, position):
      """ Private implementation of the 'hide_block()` method.

      """
      self._shown.pop(position).delete()

    def show_sector(self, sector):
      """ Ensure all blocks in the given sector that should be shown are
      drawn to the canvas.

      """
      for position in self.sectors.get(sector, []):
            if position not in self.shown and self.exposed(position):
                self.show_block(position, False)

    def hide_sector(self, sector):
      """ Ensure all blocks in the given sector that should be hidden are
      removed from the canvas.

      """
      for position in self.sectors.get(sector, []):
            if position in self.shown:
                self.hide_block(position, False)

    def change_sectors(self, before, after):
      """ Move from sector `before` to sector `after`. A sector is a
      contiguous x, y sub-region of world. Sectors are used to speed up
      world rendering.

      """
      before_set = set()
      after_set = set()
      pad = 4
      for dx in xrange(-pad, pad + 1):
            for dy in :# xrange(-pad, pad + 1):
                for dz in xrange(-pad, pad + 1):
                  if dx ** 2 + dy ** 2 + dz ** 2 > (pad + 1) ** 2:
                        continue
                  if before:
                        x, y, z = before
                        before_set.add((x + dx, y + dy, z + dz))
                  if after:
                        x, y, z = after
                        after_set.add((x + dx, y + dy, z + dz))
      show = after_set - before_set
      hide = before_set - after_set
      for sector in show:
            self.show_sector(sector)
      for sector in hide:
            self.hide_sector(sector)

    def _enqueue(self, func, *args):
      """ Add `func` to the internal queue.

      """
      self.queue.append((func, args))

    def _dequeue(self):
      """ Pop the top function from the internal queue and call it.

      """
      func, args = self.queue.popleft()
      func(*args)

    def process_queue(self):
      """ Process the entire queue while taking periodic breaks. This allows
      the game loop to run smoothly. The queue contains calls to
      _show_block() and _hide_block() so this method should be called if
      add_block() or remove_block() was called with immediate=False

      """
      start = time.clock()
      while self.queue and time.clock() - start < 1.0 / TICKS_PER_SEC:
            self._dequeue()

    def process_entire_queue(self):
      """ Process the entire queue with no breaks.

      """
      while self.queue:
            self._dequeue()


class Window(pyglet.window.Window):

    def __init__(self, *args, **kwargs):
      super(Window, self).__init__(*args, **kwargs)

      # Whether or not the window exclusively captures the mouse.
      self.exclusive = False

      # When flying gravity has no effect and speed is increased.
      self.flying = False

      # Strafing is moving lateral to the direction you are facing,
      # e.g. moving to the left or right while continuing to face forward.
      #
      # First element is -1 when moving forward, 1 when moving back, and 0
      # otherwise. The second element is -1 when moving left, 1 when moving
      # right, and 0 otherwise.
      self.strafe =

      # Current (x, y, z) position in the world, specified with floats. Note
      # that, perhaps unlike in math class, the y-axis is the vertical axis.
      self.position = (0, 0, 0)

      # First element is rotation of the player in the x-z plane (ground
      # plane) measured from the z-axis down. The second is the rotation
      # angle from the ground plane up. Rotation is in degrees.
      #
      # The vertical plane rotation ranges from -90 (looking straight down) to
      # 90 (looking straight up). The horizontal rotation range is unbounded.
      self.rotation = (0, 0)

      # Which sector the player is currently in.
      self.sector = None

      # The crosshairs at the center of the screen.
      self.reticle = None

      # Velocity in the y (upward) direction.
      self.dy = 0

      # A list of blocks the player can place. Hit num keys to cycle.
      self.inventory =

      # The current block the user can place. Hit num keys to cycle.
      self.block = self.inventory

      # Convenience list of num keys.
      self.num_keys = [
            key._1, key._2, key._3, key._4, key._5,
            key._6, key._7, key._8, key._9, key._0]

      # Instance of the model that handles the world.
      self.model = Model()

      # The label that is displayed in the top left of the canvas.
      self.label = pyglet.text.Label('', font_name='Arial', font_size=18,
            x=10, y=self.height - 10, anchor_x='left', anchor_y='top',
            color=(0, 0, 0, 255))

      # This call schedules the `update()` method to be called
      # TICKS_PER_SEC. This is the main game event loop.
      pyglet.clock.schedule_interval(self.update, 1.0 / TICKS_PER_SEC)

    def set_exclusive_mouse(self, exclusive):
      """ If `exclusive` is True, the game will capture the mouse, if False
      the game will ignore the mouse.

      """
      super(Window, self).set_exclusive_mouse(exclusive)
      self.exclusive = exclusive

    def get_sight_vector(self):
      """ Returns the current line of sight vector indicating the direction
      the player is looking.

      """
      x, y = self.rotation
      # y ranges from -90 to 90, or -pi/2 to pi/2, so m ranges from 0 to 1 and
      # is 1 when looking ahead parallel to the ground and 0 when looking
      # straight up or down.
      m = math.cos(math.radians(y))
      # dy ranges from -1 to 1 and is -1 when looking straight down and 1 when
      # looking straight up.
      dy = math.sin(math.radians(y))
      dx = math.cos(math.radians(x - 90)) * m
      dz = math.sin(math.radians(x - 90)) * m
      return (dx, dy, dz)

    def get_motion_vector(self):
      """ Returns the current motion vector indicating the velocity of the
      player.

      Returns
      -------
      vector : tuple of len 3
            Tuple containing the velocity in x, y, and z respectively.

      """
      if any(self.strafe):
            x, y = self.rotation
            strafe = math.degrees(math.atan2(*self.strafe))
            y_angle = math.radians(y)
            x_angle = math.radians(x + strafe)
            if self.flying:
                m = math.cos(y_angle)
                dy = math.sin(y_angle)
                if self.strafe:
                  # Moving left or right.
                  dy = 0.0
                  m = 1
                if self.strafe > 0:
                  # Moving backwards.
                  dy *= -1
                # When you are flying up or down, you have less left and right
                # motion.
                dx = math.cos(x_angle) * m
                dz = math.sin(x_angle) * m
            else:
                dy = 0.0
                dx = math.cos(x_angle)
                dz = math.sin(x_angle)
      else:
            dy = 0.0
            dx = 0.0
            dz = 0.0
      return (dx, dy, dz)

    def update(self, dt):
      """ This method is scheduled to be called repeatedly by the pyglet
      clock.

      Parameters
      ----------
      dt : float
            The change in time since the last call.

      """
      self.model.process_queue()
      sector = sectorize(self.position)
      if sector != self.sector:
            self.model.change_sectors(self.sector, sector)
            if self.sector is None:
                self.model.process_entire_queue()
            self.sector = sector
      m = 8
      dt = min(dt, 0.2)
      for _ in xrange(m):
            self._update(dt / m)

    def _update(self, dt):
      """ Private implementation of the `update()` method. This is where most
      of the motion logic lives, along with gravity and collision detection.

      Parameters
      ----------
      dt : float
            The change in time since the last call.

      """
      # walking
      speed = FLYING_SPEED if self.flying else WALKING_SPEED
      d = dt * speed # distance covered this tick.
      dx, dy, dz = self.get_motion_vector()
      # New position in space, before accounting for gravity.
      dx, dy, dz = dx * d, dy * d, dz * d
      # gravity
      if not self.flying:
            # Update your vertical speed: if you are falling, speed up until you
            # hit terminal velocity; if you are jumping, slow down until you
            # start falling.
            self.dy -= dt * GRAVITY
            self.dy = max(self.dy, -TERMINAL_VELOCITY)
            dy += self.dy * dt
      # collisions
      x, y, z = self.position
      x, y, z = self.collide((x + dx, y + dy, z + dz), PLAYER_HEIGHT)
      self.position = (x, y, z)

    def collide(self, position, height):
      """ Checks to see if the player at the given `position` and `height`
      is colliding with any blocks in the world.

      Parameters
      ----------
      position : tuple of len 3
            The (x, y, z) position to check for collisions at.
      height : int or float
            The height of the player.

      Returns
      -------
      position : tuple of len 3
            The new position of the player taking into account collisions.

      """
      # How much overlap with a dimension of a surrounding block you need to
      # have to count as a collision. If 0, touching terrain at all counts as
      # a collision. If .49, you sink into the ground, as if walking through
      # tall grass. If >= .5, you'll fall through the ground.
      pad = 0.25
      p = list(position)
      np = normalize(position)
      for face in FACES:# check all surrounding blocks
            for i in xrange(3):# check each dimension independently
                if not face:
                  continue
                # How much overlap you have with this dimension.
                d = (p - np) * face
                if d < pad:
                  continue
                for dy in xrange(height):# check each height
                  op = list(np)
                  op -= dy
                  op += face
                  if tuple(op) not in self.model.world:
                        continue
                  p -= (d - pad) * face
                  if face == (0, -1, 0) or face == (0, 1, 0):
                        # You are colliding with the ground or ceiling, so stop
                        # falling / rising.
                        self.dy = 0
                  break
      return tuple(p)

    def on_mouse_press(self, x, y, button, modifiers):
      """ Called when a mouse button is pressed. See pyglet docs for button
      amd modifier mappings.

      Parameters
      ----------
      x, y : int
            The coordinates of the mouse click. Always center of the screen if
            the mouse is captured.
      button : int
            Number representing mouse button that was clicked. 1 = left button,
            4 = right button.
      modifiers : int
            Number representing any modifying keys that were pressed when the
            mouse button was clicked.

      """
      if self.exclusive:
            vector = self.get_sight_vector()
            block, previous = self.model.hit_test(self.position, vector)
            if (button == mouse.RIGHT) or \
                  ((button == mouse.LEFT) and (modifiers & key.MOD_CTRL)):
                # ON OSX, control + left click = right click.
                if previous:
                  self.model.add_block(previous, self.block)
            elif button == pyglet.window.mouse.LEFT and block:
                texture = self.model.world
                if texture != STONE:
                  self.model.remove_block(block)
      else:
            self.set_exclusive_mouse(True)

    def on_mouse_motion(self, x, y, dx, dy):
      """ Called when the player moves the mouse.

      Parameters
      ----------
      x, y : int
            The coordinates of the mouse click. Always center of the screen if
            the mouse is captured.
      dx, dy : float
            The movement of the mouse.

      """
      if self.exclusive:
            m = 0.15
            x, y = self.rotation
            x, y = x + dx * m, y + dy * m
            y = max(-90, min(90, y))
            self.rotation = (x, y)

    def on_key_press(self, symbol, modifiers):
      """ Called when the player presses a key. See pyglet docs for key
      mappings.

      Parameters
      ----------
      symbol : int
            Number representing the key that was pressed.
      modifiers : int
            Number representing any modifying keys that were pressed.

      """
      if symbol == key.W:
            self.strafe -= 1
      elif symbol == key.S:
            self.strafe += 1
      elif symbol == key.A:
            self.strafe -= 1
      elif symbol == key.D:
            self.strafe += 1
      elif symbol == key.SPACE:
            if self.dy == 0:
                self.dy = JUMP_SPEED
      elif symbol == key.ESCAPE:
            self.set_exclusive_mouse(False)
      elif symbol == key.TAB:
            self.flying = not self.flying
      elif symbol in self.num_keys:
            index = (symbol - self.num_keys) % len(self.inventory)
            self.block = self.inventory

    def on_key_release(self, symbol, modifiers):
      """ Called when the player releases a key. See pyglet docs for key
      mappings.

      Parameters
      ----------
      symbol : int
            Number representing the key that was pressed.
      modifiers : int
            Number representing any modifying keys that were pressed.

      """
      if symbol == key.W:
            self.strafe += 1
      elif symbol == key.S:
            self.strafe -= 1
      elif symbol == key.A:
            self.strafe += 1
      elif symbol == key.D:
            self.strafe -= 1

    def on_resize(self, width, height):
      """ Called when the window is resized to a new `width` and `height`.

      """
      # label
      self.label.y = height - 10
      # reticle
      if self.reticle:
            self.reticle.delete()
      x, y = self.width // 2, self.height // 2
      n = 10
      self.reticle = pyglet.graphics.vertex_list(4,
            ('v2i', (x - n, y, x + n, y, x, y - n, x, y + n))
      )

    def set_2d(self):
      """ Configure OpenGL to draw in 2d.

      """
      width, height = self.get_size()
      glDisable(GL_DEPTH_TEST)
      viewport = self.get_viewport_size()
      glViewport(0, 0, max(1, viewport), max(1, viewport))
      glMatrixMode(GL_PROJECTION)
      glLoadIdentity()
      glOrtho(0, max(1, width), 0, max(1, height), -1, 1)
      glMatrixMode(GL_MODELVIEW)
      glLoadIdentity()

    def set_3d(self):
      """ Configure OpenGL to draw in 3d.

      """
      width, height = self.get_size()
      glEnable(GL_DEPTH_TEST)
      viewport = self.get_viewport_size()
      glViewport(0, 0, max(1, viewport), max(1, viewport))
      glMatrixMode(GL_PROJECTION)
      glLoadIdentity()
      gluPerspective(65.0, width / float(height), 0.1, 60.0)
      glMatrixMode(GL_MODELVIEW)
      glLoadIdentity()
      x, y = self.rotation
      glRotatef(x, 0, 1, 0)
      glRotatef(-y, math.cos(math.radians(x)), 0, math.sin(math.radians(x)))
      x, y, z = self.position
      glTranslatef(-x, -y, -z)

    def on_draw(self):
      """ Called by pyglet to draw the canvas.

      """
      self.clear()
      self.set_3d()
      glColor3d(1, 1, 1)
      self.model.batch.draw()
      self.draw_focused_block()
      self.set_2d()
      self.draw_label()
      self.draw_reticle()

    def draw_focused_block(self):
      """ Draw black edges around the block that is currently under the
      crosshairs.

      """
      vector = self.get_sight_vector()
      block = self.model.hit_test(self.position, vector)
      if block:
            x, y, z = block
            vertex_data = cube_vertices(x, y, z, 0.51)
            glColor3d(0, 0, 0)
            glPolygonMode(GL_FRONT_AND_BACK, GL_LINE)
            pyglet.graphics.draw(24, GL_QUADS, ('v3f/static', vertex_data))
            glPolygonMode(GL_FRONT_AND_BACK, GL_FILL)

    def draw_label(self):
      """ Draw the label in the top left of the screen.

      """
      x, y, z = self.position
      self.label.text = '%02d (%.2f, %.2f, %.2f) %d / %d' % (
            pyglet.clock.get_fps(), x, y, z,
            len(self.model._shown), len(self.model.world))
      self.label.draw()

    def draw_reticle(self):
      """ Draw the crosshairs in the center of the screen.

      """
      glColor3d(0, 0, 0)
      self.reticle.draw(GL_LINES)


def setup_fog():
    """ Configure the OpenGL fog properties.

    """
    # Enable fog. Fog "blends a fog color with each rasterized pixel fragment's
    # post-texturing color."
    glEnable(GL_FOG)
    # Set the fog color.
    glFogfv(GL_FOG_COLOR, (GLfloat * 4)(0.5, 0.69, 1.0, 1))
    # Say we have no preference between rendering speed and quality.
    glHint(GL_FOG_HINT, GL_DONT_CARE)
    # Specify the equation used to compute the blending factor.
    glFogi(GL_FOG_MODE, GL_LINEAR)
    # How close and far away fog starts and ends. The closer the start and end,
    # the denser the fog in the fog range.
    glFogf(GL_FOG_START, 20.0)
    glFogf(GL_FOG_END, 60.0)


def setup():
    """ Basic OpenGL configuration.

    """
    # Set the color of "clear", i.e. the sky, in rgba.
    glClearColor(0.5, 0.69, 1.0, 1)
    # Enable culling (not rendering) of back-facing facets -- facets that aren't
    # visible to you.
    glEnable(GL_CULL_FACE)
    # Set the texture minification/magnification function to GL_NEAREST (nearest
    # in Manhattan distance) to the specified texture coordinates. GL_NEAREST
    # "is generally faster than GL_LINEAR, but it can produce textured images
    # with sharper edges because the transition between texture elements is not
    # as smooth."
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST)
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST)
    setup_fog()


def main():
    window = Window(width=800, height=600, caption='Pyglet', resizable=True)
    # Hide the mouse cursor and prevent the mouse from leaving the window.
    window.set_exclusive_mouse(True)
    setup()
    pyglet.app.run()


if __name__ == '__main__':
    main()

hrp 发表于 2020-8-9 19:35:52

可以有说什么错误吗?还有,您能写出这样的代码应该不至于连debug都不会吧?

New_Stars 发表于 2020-8-10 13:12:50

hrp 发表于 2020-8-9 19:35
可以有说什么错误吗?还有,您能写出这样的代码应该不至于连debug都不会吧?

Python 3.8.5 (tags/v3.8.5:580fbb0, Jul 20 2020, 15:57:54) on win32
Type "help", "copyright", "credits" or "license()" for more information.
>>>
===================== RESTART: D:\galate\Minecraft\main.py =====================
Traceback (most recent call last):
File "D:\galate\Minecraft\main.py", line 909, in <module>
    main()
File "D:\galate\Minecraft\main.py", line 905, in main
    pyglet.app.run()
File "C:\Users\Python\AppData\Local\Programs\Python\Python38\lib\site-packages\pyglet\app\__init__.py", line 107, in run
    event_loop.run()
File "C:\Users\Python\AppData\Local\Programs\Python\Python38\lib\site-packages\pyglet\app\base.py", line 167, in run
    timeout = self.idle()
File "C:\Users\Python\AppData\Local\Programs\Python\Python38\lib\site-packages\pyglet\app\base.py", line 237, in idle
    redraw_all = self.clock.call_scheduled_functions(dt)
File "C:\Users\Python\AppData\Local\Programs\Python\Python38\lib\site-packages\pyglet\clock.py", line 292, in call_scheduled_functions
    item.func(now - item.last_ts, *item.args, **item.kwargs)
File "D:\galate\Minecraft\main.py", line 578, in update
    self.model.process_queue()
File "D:\galate\Minecraft\main.py", line 429, in process_queue
    start = time.clock()
AttributeError: module 'time' has no attribute 'clock'
>>>
页: [1]
查看完整版本: 为什么自己写的代码运行成功,却突然未影响