Python实现CART
本帖最后由 糖逗 于 2020-11-16 14:30 编辑参考书籍:《机器学习实战》
1.CART回归(预剪枝,通过tolS和tolT两个参数控制)
import numpy as np
def loadDataSet(fileName):
dataMat = []
fr = open(fileName)
for line in fr.readlines():
curLine = line.strip().split('\t')
fltLine = list(map(float,curLine))
dataMat.append(fltLine)
return np.mat(dataMat)
def binSplitDataSet(dataSet, feature, value):
mat0 = dataSet > value),:]
mat1 = dataSet <= value),:]
return mat0,mat1
def regLeaf(dataSet):
return np.mean(dataSet[:,-1])
def regErr(dataSet):
return np.var(dataSet[:,-1]) * np.shape(dataSet)
def chooseBestSplit(dataSet, leafType = regLeaf, errType = regErr, ops=(1,4)):
tolS = ops#每次特征选择后的降低总方差的最小值
tolN = ops#每次换分后每个子节点的最少样本个数
if len(set(dataSet[:,-1].T.tolist())) == 1:#已经没有可分的直接返回成叶子节点
return None, leafType(dataSet)
m,n = np.shape(dataSet)
S = errType(dataSet)
bestS = np.inf; bestIndex = 0; bestValue = 0
for featIndex in range(n-1):
for splitVal in set(dataSet[:,featIndex].tolist()):
mat0, mat1 = binSplitDataSet(dataSet, featIndex, splitVal)
if (np.shape(mat0) < tolN) or (np.shape(mat1) < tolN): continue
newS = errType(mat0) + errType(mat1)
if newS < bestS:
bestIndex = featIndex
bestValue = splitVal
bestS = newS
if (S - bestS) < tolS:
return None, leafType(dataSet)#叶子节点
mat0, mat1 = binSplitDataSet(dataSet, bestIndex, bestValue)
if (np.shape(mat0) < tolN) or (np.shape(mat1) < tolN):
return None, leafType(dataSet)
return bestIndex,bestValue
def createTree(dataSet, leafType = regLeaf, errType = regErr, ops=(1,4)):
#递归的形式生成树
feat, val = chooseBestSplit(dataSet, leafType, errType, ops)
if feat == None: return val
retTree = {}
retTree['spInd'] = feat
retTree['spVal'] = val
lSet, rSet = binSplitDataSet(dataSet, feat, val)
retTree['left'] = createTree(lSet, leafType, errType, ops)
retTree['right'] = createTree(rSet, leafType, errType, ops)
return retTree
if __name__ == "__main__":
myDat = loadDataSet(r"C:\...\ex00.txt")
res = createTree(myDat)
2.CART回归(后剪枝)
import numpy as np
def loadDataSet(fileName):
dataMat = []
fr = open(fileName)
for line in fr.readlines():
curLine = line.strip().split('\t')
fltLine = list(map(float,curLine))
dataMat.append(fltLine)
return np.mat(dataMat)
def binSplitDataSet(dataSet, feature, value):
mat0 = dataSet > value),:]
mat1 = dataSet <= value),:]
return mat0,mat1
def regLeaf(dataSet):
return np.mean(dataSet[:,-1])
def regErr(dataSet):
return np.var(dataSet[:,-1]) * np.shape(dataSet)
def chooseBestSplit(dataSet, leafType = regLeaf, errType = regErr, ops=(1,4)):
tolS = ops#每次特征选择后的降低总方差的最小值
tolN = ops#每次换分后每个子节点的最少样本个数
if len(set(dataSet[:,-1].T.tolist())) == 1:#已经没有可分的直接返回成叶子节点
return None, leafType(dataSet)
m,n = np.shape(dataSet)
S = errType(dataSet)
bestS = np.inf; bestIndex = 0; bestValue = 0
for featIndex in range(n-1):
for splitVal in set(dataSet[:,featIndex].tolist()):
mat0, mat1 = binSplitDataSet(dataSet, featIndex, splitVal)
if (np.shape(mat0) < tolN) or (np.shape(mat1) < tolN): continue
newS = errType(mat0) + errType(mat1)
if newS < bestS:
bestIndex = featIndex
bestValue = splitVal
bestS = newS
if (S - bestS) < tolS:
return None, leafType(dataSet)#叶子节点
mat0, mat1 = binSplitDataSet(dataSet, bestIndex, bestValue)
if (np.shape(mat0) < tolN) or (np.shape(mat1) < tolN):
return None, leafType(dataSet)
return bestIndex,bestValue
def createTree(dataSet, leafType = regLeaf, errType = regErr, ops=(1,4)):
#递归的形式生成树
feat, val = chooseBestSplit(dataSet, leafType, errType, ops)
if feat == None: return val
retTree = {}
retTree['spInd'] = feat
retTree['spVal'] = val
lSet, rSet = binSplitDataSet(dataSet, feat, val)
retTree['left'] = createTree(lSet, leafType, errType, ops)
retTree['right'] = createTree(rSet, leafType, errType, ops)
return retTree
def isTree(obj):
return (type(obj).__name__=='dict')
def getMean(tree):#树的递归
if isTree(tree['right']): tree['right'] = getMean(tree['right'])
if isTree(tree['left']): tree['left'] = getMean(tree['left'])
return (tree['left']+tree['right']) / 2.0
def prune(tree, testData):
if np.shape(testData) == 0: return getMean(tree)
if (isTree(tree['right']) or isTree(tree['left'])):
lSet, rSet = binSplitDataSet(testData, tree['spInd'], tree['spVal'])
if isTree(tree['left']): tree['left'] = prune(tree['left'], lSet)
if isTree(tree['right']): tree['right'] =prune(tree['right'], rSet)
if not isTree(tree['left']) and not isTree(tree['right']):
lSet, rSet = binSplitDataSet(testData, tree['spInd'], tree['spVal'])
errorNoMerge = sum(np.power(lSet[:,-1] - tree['left'],2)) +\
sum(np.power(rSet[:,-1] - tree['right'],2))
treeMean = (tree['left'] + tree['right'])/2.0
errorMerge = sum(np.power(testData[:, -1] - treeMean, 2))
if errorMerge < errorNoMerge:
print("merging")
return treeMean
else:
return tree
return tree
if __name__ == "__main__":
myDat = loadDataSet(r"C:\...\ex2.txt")
myDatTest = loadDataSet(r"C:\...\ex2test.txt")
myTree = createTree(myDat, ops = (0, 1))
res = prune(myTree, myDatTest)
#先基于训练集生成完整的树,然后通过验证集进行后剪枝(相当于调参)。
3.模型树
import numpy as np
def loadDataSet(fileName):
dataMat = []
fr = open(fileName)
for line in fr.readlines():
curLine = line.strip().split('\t')
fltLine = list(map(float,curLine))
dataMat.append(fltLine)
return np.mat(dataMat)
def binSplitDataSet(dataSet, feature, value):
mat0 = dataSet > value),:]
mat1 = dataSet <= value),:]
return mat0,mat1
def regLeaf(dataSet):
return np.mean(dataSet[:,-1])#返回叶子节点的均值
def regErr(dataSet):
return np.var(dataSet[:,-1]) * np.shape(dataSet)
def chooseBestSplit(dataSet, leafType = regLeaf, errType = regErr, ops=(1,4)):
tolS = ops#每次特征选择后的降低总方差的最小值
tolN = ops#每次换分后每个子节点的最少样本个数
if len(set(dataSet[:,-1].T.tolist())) == 1:#已经没有可分的直接返回成叶子节点
return None, leafType(dataSet)
m,n = np.shape(dataSet)
S = errType(dataSet)
bestS = np.inf; bestIndex = 0; bestValue = 0
for featIndex in range(n-1):
for splitVal in set(dataSet[:,featIndex].tolist()):
mat0, mat1 = binSplitDataSet(dataSet, featIndex, splitVal)
if (np.shape(mat0) < tolN) or (np.shape(mat1) < tolN): continue
newS = errType(mat0) + errType(mat1)
if newS < bestS:
bestIndex = featIndex
bestValue = splitVal
bestS = newS
if (S - bestS) < tolS:
return None, leafType(dataSet)#叶子节点
mat0, mat1 = binSplitDataSet(dataSet, bestIndex, bestValue)
if (np.shape(mat0) < tolN) or (np.shape(mat1) < tolN):
return None, leafType(dataSet)
return bestIndex,bestValue
def createTree(dataSet, leafType = regLeaf, errType = regErr, ops=(1,4)):
#递归的形式生成树
feat, val = chooseBestSplit(dataSet, leafType, errType, ops)
if feat == None: return val
retTree = {}
retTree['spInd'] = feat
retTree['spVal'] = val
lSet, rSet = binSplitDataSet(dataSet, feat, val)
retTree['left'] = createTree(lSet, leafType, errType, ops)
retTree['right'] = createTree(rSet, leafType, errType, ops)
return retTree
def linearSolve(dataSet):
m, n = np.shape(dataSet)
X = np.mat(np.ones((m,n))); Y = np.mat(np.ones((m,1)))
X[:,1:n] = dataSet[:,0:n-1]; Y = dataSet[:,-1]
xTx = X.T*X
if np.linalg.det(xTx) == 0.0:
raise NameError('This matrix is singular, cannot do inverse,\n\
try increasing the second value of ops')
ws = xTx.I * (X.T * Y)#线性回归公式
return ws,X,Y
def modelLeaf(dataSet):
ws,X,Y = linearSolve(dataSet)
return ws
def modelErr(dataSet):
ws,X,Y = linearSolve(dataSet)
yHat = X * ws
return sum(np.power(Y - yHat,2))
if __name__ == "__main__":
myDat = loadDataSet(r"C:\...\ex2.txt")
myTree = createTree(myDat, modelLeaf, modelErr, (1, 10)) {:10_259:}
页:
[1]