处于美铼 发表于 2023-2-17 23:28:47

xgboost怎么预测一维数据(python实现)

xgboost怎么预测一维数据(python实现)

歌者文明清理员 发表于 2023-4-12 18:47:39

假设要使用xgboost预测一维数据,可以按照以下步骤进行:

1. 导入必要的包和数据

import xgboost as xgb
import numpy as np

X_train = np.array([, , , , ]) # 特征数据
y_train = np.array() # 标签数据

2. 创建DMatrix对象并进行训练

data_train = xgb.DMatrix(X_train, label=y_train) # 创建DMatrix对象

param = {'max_depth': 3, 'eta': 0.3, 'objective': 'reg:squarederror'} # 设置参数
num_round = 10 # 迭代次数

model = xgb.train(param, data_train, num_round) # 进行训练

3. 进行预测

X_test = np.array([]) # 待预测数据
data_test = xgb.DMatrix(X_test) # 创建DMatrix对象

y_pred = model.predict(data_test) # 进行预测
print(y_pred) # 输出预测结果

完整代码如下:

import xgboost as xgb
import numpy as np

X_train = np.array([, , , , ])
y_train = np.array()

data_train = xgb.DMatrix(X_train, label=y_train)

param = {'max_depth': 3, 'eta': 0.3, 'objective': 'reg:squarederror'}
num_round = 10

model = xgb.train(param, data_train, num_round)

X_test = np.array([])
data_test = xgb.DMatrix(X_test)

y_pred = model.predict(data_test)
print(y_pred)
页: [1]
查看完整版本: xgboost怎么预测一维数据(python实现)