如何修改才能消除这警告,求大师帮忙,谢谢
警告内容如下:SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
filtered_df['B'] = filtered_df['B'].astype(int)
最大值: 12
对应的日期: 2022-12-15
运行的代码:
import pandas as pd
data = [["004243","C","2022-12-22",'',"4"],["162719","A","2022-12-20","8","6"],
["004243","C","2022-12-19",'',"12"],["519212","B","2022-12-18","56","3"],
["162411","E","2022-12-17","8","7"],["007844","FC","2022-12-16","","8"],
["163208","G","2022-12-15","66","12"],["162719","A","2022-12-14","8","6"],
["519212","B","2022-12-12","56","3"],["162411","E","2022-12-11","8","7"],
["007844","FC","2022-12-10","","18"],["163208","G","2022-12-8","66","12"]]
columns = ["编号","名称","日期","A","B"]
df = pd.DataFrame(data, columns=columns)
# 将日期列转换为日期格式
df['日期'] = pd.to_datetime(df['日期'])
# 筛选日期大于2022-12-13的行
filtered_df = df > '2022-12-13']
# 将B列转换为整数格式
filtered_df['B'] = filtered_df['B'].astype(int)
# 找到B列的最大值
max_value = filtered_df['B'].max()
# 找到对应最大值的日期
max_date = filtered_df.loc == max_value, '日期'].iloc[-1]
print("最大值:", max_value)
print("对应的日期:", max_date.strftime('%Y-%m-%d'))
警告里有这一句提示:Try using .loc = value instead
故您可以使用.loc = value来修改数据,以消除SettingWithCopyWarning警告。请参考以下修改后的代码:
import pandas as pd
data = [["004243","C","2022-12-22",'',"4"],["162719","A","2022-12-20","8","6"],
["004243","C","2022-12-19",'',"12"],["519212","B","2022-12-18","56","3"],
["162411","E","2022-12-17","8","7"],["007844","FC","2022-12-16","","8"],
["163208","G","2022-12-15","66","12"],["162719","A","2022-12-14","8","6"],
["519212","B","2022-12-12","56","3"],["162411","E","2022-12-11","8","7"],
["007844","FC","2022-12-10","","18"],["163208","G","2022-12-8","66","12"]]
columns = ["编号","名称","日期","A","B"]
df = pd.DataFrame(data, columns=columns)
# 将日期列转换为日期格式
df['日期'] = pd.to_datetime(df['日期'])
# 筛选日期大于2022-12-13的行
filtered_df = df > '2022-12-13'].copy()
# 将B列转换为整数格式
filtered_df.loc[:, 'B'] = filtered_df['B'].astype(int)
# 找到B列的最大值
max_value = filtered_df['B'].max()
# 找到对应最大值的日期
max_date = filtered_df.loc == max_value, '日期'].iloc[-1]
print("最大值:", max_value)
print("对应的日期:", max_date.strftime('%Y-%m-%d'))
请注意,在筛选出新的DataFrame时,使用copy()方法来创建新的DataFrame副本,以避免在原始DataFrame上进行修改。在将'B'列转换为整数格式时,我们使用.loc[]方法。 新的提示:
: DeprecationWarning: In a future version, `df.iloc[:, i] = newvals` will attempt to set the values inplace instead of always setting a new array. To retain the old behavior, use either `df] = newvals` or, if columns are non-unique, `df.isetitem(i, newvals)`
filtered_df.loc[:, 'B'] = filtered_df['B'].astype(int)
最大值: 12
对应的日期: 2022-12-15 futui 发表于 2023-4-18 08:41
新的提示:
: DeprecationWarning: In a future version, `df.iloc[:, i] = newvals` will attempt to set ...
为了解决DeprecationWarning,请使用dfi]] = newvals替代.loc[]方法。以下是修改后的代码:
import pandas as pd
data = [["004243","C","2022-12-22",'',"4"],["162719","A","2022-12-20","8","6"],
["004243","C","2022-12-19",'',"12"],["519212","B","2022-12-18","56","3"],
["162411","E","2022-12-17","8","7"],["007844","FC","2022-12-16","","8"],
["163208","G","2022-12-15","66","12"],["162719","A","2022-12-14","8","6"],
["519212","B","2022-12-12","56","3"],["162411","E","2022-12-11","8","7"],
["007844","FC","2022-12-10","","18"],["163208","G","2022-12-8","66","12"]]
columns = ["编号","名称","日期","A","B"]
df = pd.DataFrame(data, columns=columns)
# 将日期列转换为日期格式
df['日期'] = pd.to_datetime(df['日期'])
# 筛选日期大于2022-12-13的行
filtered_df = df > '2022-12-13'].copy()
# 将B列转换为整数格式
filtered_df] = filtered_df['B'].astype(int)
# 找到B列的最大值
max_value = filtered_df['B'].max()
# 找到对应最大值的日期
max_date = filtered_df.loc == max_value, '日期'].iloc[-1]
print("最大值:", max_value)
print("对应的日期:", max_date.strftime('%Y-%m-%d'))
页:
[1]