基于ResNet网络模型和DenseNet网络模型的训练
请根据以下多标签分类ResNet网络模型和DenseNet网络模型分别修改提供的训练代码train.py,预测代码predict.py和测试代码evaluate.py,以分别适应两个网络模型ResNet网络模型代码如下:
import torch
import torch.nn as nn
import torch.nn.functional as F
# ResNet网络架构
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, in_planes, planes, stride=1):
super(BasicBlock, self).__init__()
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.shortcut = nn.Sequential()
if stride != 1 or in_planes != self.expansion*planes:
self.shortcut = nn.Sequential(
nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(self.expansion*planes)
)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.bn2(self.conv2(out))
out += self.shortcut(x)
out = F.relu(out)
return out
class ResNet(nn.Module):
def __init__(self, block, num_blocks, num_classes):
super(ResNet, self).__init__()
self.in_planes = 64
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.layer1 = self._make_layer(block, 64, num_blocks, stride=1)
self.layer2 = self._make_layer(block, 128, num_blocks, stride=2)
self.layer3 = self._make_layer(block, 256, num_blocks, stride=2)
self.layer4 = self._make_layer(block, 512, num_blocks, stride=2)
self.linear = nn.Linear(512*block.expansion, num_classes)
def _make_layer(self, block, planes, num_blocks, stride):
strides = + *(num_blocks-1)
layers = []
for stride in strides:
layers.append(block(self.in_planes, planes, stride))
self.in_planes = planes * block.expansion
return nn.Sequential(*layers)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)
out = F.avg_pool2d(out, 4)
out = out.view(out.size(0), -1)
out = self.linear(out)
out = torch.sigmoid(out)
return out
def ResNet18(num_classes):
return ResNet(BasicBlock, , num_classes)
DenseNet网络模型代码如下:
import torch
import torch.nn as nn
import torch.nn.functional as F
# DenseNet网络架构
class BasicBlock(nn.Module):
def __init__(self, inplanes, outplanes):
super(BasicBlock, self).__init__()
self.conv1 = nn.Conv2d(inplanes, outplanes, kernel_size=3, stride=1, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(outplanes)
self.relu1 = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(outplanes, outplanes, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(outplanes)
self.relu2 = nn.ReLU(inplace=True)
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu1(out)
out = self.conv2(out)
out = self.bn2(out)
out += residual
out = self.relu2(out)
return out
class DenseBlock(nn.Module):
def __init__(self, inplanes, outplanes, num_layers):
super(DenseBlock, self).__init__()
self.blocks = nn.ModuleList()
def forward(self, x):
features =
for block in self.blocks:
y = block(torch.cat(features,dim=1))
features.append(y)
return torch.cat(features,dim=1)
class TransitionToFeatureMap(nn.Sequential):
def __init__(self, inplanes, outplanes):
super(TransitionToFeatureMap, self).__init__(
nn.Conv2d(inplanes, outplanes, kernel_size=1),
nn.BatchNorm2d(outplanes),
nn.AvgPool2d(kernel_size=2, stride=2))
class DenseNet(nn.Module):
def __init__(self, num_classes, growth_rate, layers_num):
super(DenseNet, self).__init__()
self.growth_rate = growth_rate
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu1 = nn.ReLU(inplace=True)
self.layer1 = nn.Sequential(
nn.MaxPool2d(kernel_size=3, stride=2, padding=1),
DenseBlock(64, growth_rate, layers_num))
self.inplanes = 64 + growth_rate * layers_num
self.layer2 = nn.Sequential(
TransitionToFeatureMap(self.inplanes, 128),
DenseBlock(128, growth_rate, layers_num))
self.inplanes += growth_rate * layers_num
self.layer3 = nn.Sequential(
TransitionToFeatureMap(self.inplanes, 256),
DenseBlock(256, growth_rate, layers_num))
self.inplanes += growth_rate * layers_num
self.layer4 = nn.Sequential(
TransitionToFeatureMap(self.inplanes, 512),
DenseBlock(512, growth_rate, layers_num))
self.inplanes += growth_rate * layers_num
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(self.inplanes, num_classes)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu1(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
x = torch.sigmoid(x)
return x
def DenseNet121(num_classes):
return DenseNet(num_classes=num_classes,
growth_rate=32,
layers_num=)
训练代码train.py:
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from torchvision.datasets import ImageFolder
from torchvision import transforms
from model import ResNet18
import matplotlib.pyplot as plt
# 随机种子
torch.manual_seed(0)
# 设置参数和数据路径
lr = 0.0001
num_epochs = 20
batch_size = 8
data_path = '/home/a504/mjw/Code/data_set/plantvillage_demo1'
def main():
# 数据处理
transform_train = transforms.Compose([transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor()])
train_dataset = ImageFolder(root=data_path + '/train/', transform=transform_train)
train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
transform_val = transforms.Compose([transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor()])
val_dataset = ImageFolder(root=data_path + '/val/', transform=transform_val)
val_loader = DataLoader(dataset=val_dataset, batch_size=batch_size, shuffle=False)
# 初始化模型
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = ResNet18(num_classes=len(train_dataset.classes)).to(device)
# define loss function and optimizer
criterion = nn.BCELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=lr)
# 训练模型
train_losses = []
val_losses = []
for epoch in range(num_epochs):
# 训练
train_loss = 0.0
model.train()
for images, labels in train_loader:
images, labels = images.to(device), labels.to(device)
labels = nn.functional.one_hot(labels, num_classes=len(train_dataset.classes)).float()
optimizer.zero_grad()
# forward pass
outputs = model(images)
loss = criterion(outputs, labels)
# backward pass and optimize
loss.backward()
optimizer.step()
train_loss += loss.item() * images.size(0)
train_loss = train_loss / len(train_loader.dataset)
train_losses.append(train_loss)
# validation
val_loss = 0.0
model.eval()
with torch.no_grad():
for images, labels in val_loader:
images, labels = images.to(device), labels.to(device)
labels = nn.functional.one_hot(labels, num_classes=len(val_dataset.classes)).float()
outputs = model(images)
loss = criterion(outputs, labels)
val_loss += loss.item() * images.size(0)
val_loss = val_loss / len(val_loader.dataset)
val_losses.append(val_loss)
print('Epoch [{}/{}], Train Loss: {:.4f}, Val Loss: {:.4f}'.
format(epoch + 1, num_epochs, train_loss, val_loss))
# 保存训练数据
torch.save(model.state_dict(), 'resnet18_multi_label_classification.pth')
# visualize the training process
plt.plot(range(num_epochs), train_losses, '-b', label='train')
plt.plot(range(num_epochs), val_losses, '-r', label='validation')
plt.legend(loc='lower right')
plt.xlabel('epoch')
plt.ylabel('loss')
plt.show()
if __name__ == '__main__':
main()
预测代码predict.py:
import torch
import cv2
import numpy as np
from model import ResNet18
import matplotlib.pyplot as plt
# 加载模型
num_classes = 4
model = ResNet18(num_classes)
model.load_state_dict(torch.load('vgg16_multi_label_classification.pth'))
model.eval()
# 加载并预处理图像
image_path = 'OIP-C.jpeg'
image = cv2.imread(image_path)
image = cv2.resize(image, (224, 224))
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image_normalized = (image / 255.0 - 0.5) / 0.5
input_tensor = torch.from_numpy(image_normalized.transpose(2, 0, 1)).float().unsqueeze(0)
# 预测和可视化预测结果
with torch.no_grad():
output = model(input_tensor).squeeze().numpy()
class_names = ['Apple___Apple_scab', 'Apple___Black_rot', 'Apple___Cedar_apple_rust', 'Apple___healthy']
# acquire top2 and probabilities
top_indices = output.argsort()[-2:][::-1]
top_probabilities = output
top_class_names = for i in top_indices]
# 在图像上标记预测结果及概率
fig, ax = plt.subplots()
ax.imshow(image)
for idx, (class_name, prob) in enumerate(zip(top_class_names, top_probabilities)):
plt.text(5, 15 + 20 * idx, f'{class_names}: {prob:.2f}', fontsize=12, color='red')
plt.show()
测试代码evaluate.py:
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from torchvision.datasets import ImageFolder
from torchvision import transforms
from tqdm import tqdm
from model import ResNet18
# 常量和路径
num_classes = 4
model_path = './vgg16_multi_label_classification.pth'
test_path = '/home/a504/mjw/Code/data_set/plantvillage_demo1/val'
# 数据
transform_test = transforms.Compose([transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor()])
test_dataset = ImageFolder(test_path, transform=transform_test)
test_loader = DataLoader(test_dataset, batch_size=1, shuffle=False)
# 模型
model = ResNet18(num_classes)
model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')))
model.eval()
# define loss function
criterion = nn.BCELoss()
# 处理模型
hamming_loss = []
accuracy = []
precision = []
recall = []
f_beta = []
with torch.no_grad():
for idx, (images, labels) in tqdm(enumerate(test_loader), total=len(test_loader)):
outputs = model(images)
predicted = (outputs > 0.5).float()# threshold = 0.5
hamming_loss.append((predicted != labels.float()).sum().item() / (num_classes * len(labels)))
tp = ((predicted == 1) & (labels.float() == 1)).sum().item()
fp = ((predicted == 1) & (labels.float() == 0)).sum().item()
tn = ((predicted == 0) & (labels.float() == 0)).sum().item()
fn = ((predicted == 0) & (labels.float() == 1)).sum().item()
accuracy.append((tp + tn) / (num_classes * len(labels)))
precision.append(tp / (tp + fp + 1e-7))
recall.append(tp / (tp + fn + 1e-7))
f_beta.append(((1 + 0.5 ** 2) * precision[-1] * recall[-1]) / ((0.5 ** 2) * precision[-1] + recall[-1] + 1e-7))
print("Hamming Loss: {:.4f}".format(sum(hamming_loss) / len(hamming_loss)))
print("Accuracy: {:.4f}".format(sum(accuracy) / len(accuracy)))
print("Precision: {:.4f}".format(sum(precision) / len(precision)))
print("Recall: {:.4f}".format(sum(recall) / len(recall)))
print("F-beta Score: {:.4f}".format(sum(f_beta) / len(f_beta))) 为了修改训练代码、预测代码和测试代码以适应ResNet和DenseNet模型,需要根据所选模型导入适当的模型类并更改模型实例化部分。下面提供了修改后的代码:
ResNet训练代码(train_resnet.py):
from model_resnet import ResNet18# 修改这一行
# 其他代码保持不变
# 初始化模型
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = ResNet18(num_classes=len(train_dataset.classes)).to(device)# 修改这一行
DenseNet训练代码(train_densenet.py):
from model_densenet import DenseNet121# 修改这一行
# 其他代码保持不变
# 初始化模型
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = DenseNet121(num_classes=len(train_dataset.classes)).to(device)# 修改这一行
ResNet预测代码(predict_resnet.py):
from model_resnet import ResNet18# 修改这一行
# 其他代码保持不变
# 加载模型
num_classes = 4
model = ResNet18(num_classes)# 修改这一行
model.load_state_dict(torch.load('resnet18_multi_label_classification.pth'))
model.eval()
DenseNet预测代码(predict_densenet.py):
from model_densenet import DenseNet121# 修改这一行
# 其他代码保持不变
# 加载模型
num_classes = 4
model = DenseNet121(num_classes)# 修改这一行
model.load_state_dict(torch.load('densenet121_multi_label_classification.pth'))
model.eval()
ResNet测试代码(evaluate_resnet.py):
from model_resnet import ResNet18# 修改这一行
# 其他代码保持不变
# 模型
model = ResNet18(num_classes)# 修改这一行
model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')))
model.eval()
DenseNet测试代码(evaluate_densenet.py):
from model_densenet import DenseNet121# 修改这一行
# 其他代码保持不变
# 模型
model = DenseNet121(num_classes)# 修改这一行
model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')))
model.eval()
注意:需要根据所选模型将 `train.py`、`predict.py` 和 `evaluate.py` 重命名为 `train_resnet.py`、`predict_resnet.py`、`evaluate_resnet.py` 或 `train_densenet.py`、`predict_densenet.py`、`evaluate_densenet.py`。同时,确保在对应的 `model_resnet.py` 和 `model_densenet.py` 中包含了所选网络的代码。 本帖最后由 黎明丿晓小 于 2023-4-23 17:08 编辑
isdkz 发表于 2023-4-23 16:57
为了修改训练代码、预测代码和测试代码以适应ResNet和DenseNet模型,需要根据所选模型导入适当的模型类并更 ...
训练代码ResNet这样改汇报错:
Traceback (most recent call last):
File "/home/a504/mjw/Code/Multi-label_classification/ResNet_ML/train.py", line 94, in <module>
main()
File "/home/a504/mjw/Code/Multi-label_classification/ResNet_ML/train.py", line 54, in main
outputs = model(images)
File "/home/a504/mjw/envs/pytorch/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1102, in _call_impl
return forward_call(*input, **kwargs)
File "/home/a504/mjw/Code/Multi-label_classification/ResNet_ML/model.py", line 61, in forward
out = self.linear(out)
File "/home/a504/mjw/envs/pytorch/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1102, in _call_impl
return forward_call(*input, **kwargs)
File "/home/a504/mjw/envs/pytorch/lib/python3.8/site-packages/torch/nn/modules/linear.py", line 103, in forward
return F.linear(input, self.weight, self.bias)
File "/home/a504/mjw/envs/pytorch/lib/python3.8/site-packages/torch/nn/functional.py", line 1848, in linear
return torch._C._nn.linear(input, weight, bias)
RuntimeError: mat1 and mat2 shapes cannot be multiplied (8x25088 and 512x4)
黎明丿晓小 发表于 2023-4-23 17:04
训练代码这样改汇报错:
Traceback (most recent call last):
File "/home/a504/mjw/Code/Multi-labe ...
这个错误提示是由于在矩阵乘法操作中矩阵形状不匹配导致的。错误提示中,mat1 的形状为 (8x25088),mat2 的形状为 (512x4)。根据矩阵乘法的规则,mat1 的列数应该等于 mat2 的行数,但在这里并不满足这个条件。
请查看您的代码,尤其是涉及到这两个矩阵的部分,确保矩阵形状是正确的。如果您在 ResNet_ML/model.py 的第 61 行定义了一个线性层,请检查输入特征的数量是否与该线性层的输入大小匹配。此外,请检查在您的模型中的任何卷积或池化层,以确保它们在传递给线性层之前正确地调整了特征大小。
如果您能提供有关模型结构的更多详细信息,我将更好地帮助您解决这个问题。 isdkz 发表于 2023-4-23 17:06
这个错误提示是由于在矩阵乘法操作中矩阵形状不匹配导致的。错误提示中,mat1 的形状为 (8x25088),mat2...
ResNet模型信息已经提供如上,另外,DenseNet运行训练代码报错:
Traceback (most recent call last):
File "/home/a504/mjw/Code/Multi-label_classification/DenseNet_ML/train.py", line 94, in <module>
main()
File "/home/a504/mjw/Code/Multi-label_classification/DenseNet_ML/train.py", line 54, in main
outputs = model(images)
File "/home/a504/mjw/envs/pytorch/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1102, in _call_impl
return forward_call(*input, **kwargs)
File "/home/a504/mjw/Code/Multi-label_classification/DenseNet_ML/model.py", line 88, in forward
x = self.layer1(x)
File "/home/a504/mjw/envs/pytorch/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1102, in _call_impl
return forward_call(*input, **kwargs)
File "/home/a504/mjw/envs/pytorch/lib/python3.8/site-packages/torch/nn/modules/container.py", line 141, in forward
input = module(input)
File "/home/a504/mjw/envs/pytorch/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1102, in _call_impl
return forward_call(*input, **kwargs)
File "/home/a504/mjw/Code/Multi-label_classification/DenseNet_ML/model.py", line 39, in forward
y = block(torch.cat(features,dim=1))
File "/home/a504/mjw/envs/pytorch/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1102, in _call_impl
return forward_call(*input, **kwargs)
File "/home/a504/mjw/Code/Multi-label_classification/DenseNet_ML/model.py", line 26, in forward
out += residual
RuntimeError: The size of tensor a (32) must match the size of tensor b (64) at non-singleton dimension 1 黎明丿晓小 发表于 2023-4-23 17:10
ResNet模型信息已经提供如上,另外,DenseNet运行训练代码报错:
Traceback (most recent call last):
...
这个错误是由于在执行逐元素相加操作时,两个张量的形状不匹配导致的。错误提示中,张量a的大小为32,张量b的大小为64,它们在非单例维度(非1维度)上的大小必须匹配。
在您的代码中,这个错误是由 "out += residual" 这一行引起的。为了解决这个问题,您需要确保在执行逐元素相加操作之前,out 和 residual 张量的形状是匹配的。
请检查您的 DenseNet_ML/model.py 文件中的第 26 行,以及与之相关的所有代码。通常,这个问题是由于在创建残差连接时未正确调整特征图大小或通道数量导致的。在 DenseNet 中,一般是通过卷积或池化层来调整特征图的大小或通道数量。
如果您提供有关您的 DenseNet 模型结构的更多详细信息,我将更好地帮助您解决这个问题。 isdkz 发表于 2023-4-23 17:14
这个错误是由于在执行逐元素相加操作时,两个张量的形状不匹配导致的。错误提示中,张量a的大小为32,张 ...
ResNet模型结构和DenseNet模型结构已经提供如上
页:
[1]