|
发表于 2023-8-8 21:07:12
|
显示全部楼层
修改边缘检测部分函数代码,使其实现自适应边缘检测。
- import cv2
- import numpy as np
- def adaptive_edge_detection(images):
- edges = []
- for image in images:
- # 自适应阈值边缘检测方法,这里使用自适应高斯阈值方法
- gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
- blurred_image = cv2.GaussianBlur(gray_image, (5, 5), 0)
- edges_image = cv2.adaptiveThreshold(blurred_image, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 11, 2)
- edges.append(edges_image)
- return edges
- # 调用自适应边缘检测函数进行检测
- adaptive_edges = adaptive_edge_detection(gray_images)
- # 其他代码保持不变
复制代码
完整修改后的代码如下:
- from tifffile import imread, imwrite
- import cv2
- import numpy as np
- # 1. 分割遥感影像为多块图幅
- def split_image(image, num_rows, num_cols):
- height, width = image.shape[:2]
- row_height = height // num_rows
- col_width = width // num_cols
- images = []
- for r in range(num_rows):
- for c in range(num_cols):
- start_row = r * row_height
- end_row = start_row + row_height
- start_col = c * col_width
- end_col = start_col + col_width
- sub_image = image[start_row:end_row, start_col:end_col]
- images.append(sub_image)
- return images
- # 2. 分别对每块图幅转为灰度图像,并应用直方图均衡化
- def convert_to_grayscale(images):
- grayscale_images = []
- for image in images:
- gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
- enhanced_image = cv2.equalizeHist(gray_image) # 直方图均衡化增强对比度
- grayscale_images.append(enhanced_image)
- return grayscale_images
- # 修改的部分:自适应边缘检测函数
- def adaptive_edge_detection(images):
- edges = []
- for image in images:
- # 自适应阈值边缘检测方法,这里使用自适应高斯阈值方法
- gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
- blurred_image = cv2.GaussianBlur(gray_image, (5, 5), 0)
- edges_image = cv2.adaptiveThreshold(blurred_image, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 11, 2)
- edges.append(edges_image)
- return edges
- # 4. 消除噪声干扰
- def denoise(images):
- denoised_images = []
- for image in images:
- # 使用其他滤波方法,这里以高斯滤波为例
- denoised_image = cv2.GaussianBlur(image, (5, 5), 0)
- denoised_images.append(denoised_image)
- return denoised_images
- # 5. 将各个图幅合并为一个图幅
- def merge_images(images, num_rows, num_cols):
- row_height, col_width = images[0].shape[:2]
- merged_image = np.zeros((row_height * num_rows, col_width * num_cols), dtype=np.uint8)
- i = 0
- for r in range(num_rows):
- for c in range(num_cols):
- start_row = r * row_height
- end_row = start_row + row_height
- start_col = c * col_width
- end_col = start_col + col_width
- merged_image[start_row:end_row, start_col:end_col] = images[i]
- i += 1
- return merged_image
- # 6. 导出结果
- def export_result(image, filename):
- cv2.imwrite(filename, image)
- # 加载遥感影像
- image = imread(r"F:\duneline\dune\dune.tif")
- # 1. 分割遥感影像为多块图幅
- num_rows = 7
- num_cols = 11
- sub_images = split_image(image, num_rows, num_cols)
- # 2. 分别对每块图幅转为灰度图像
- gray_images = convert_to_grayscale(sub_images)
- # 3. 使用自适应边缘检测方法代替Canny算法
- adaptive_edges = adaptive_edge_detection(gray_images)
- # 4. 消除噪声干扰
- denoised_edges = denoise(adaptive_edges)
- # 5. 将各个图幅合并为一个图幅
- merged_image = merge_images(denoised_edges, num_rows, num_cols)
- # 6. 导出结果
- export_result(merged_image, 'path_to_output2.jpg')
复制代码
请根据你的需求将“path_to_output2.jpg”替换为实际的输出路径。
如果回答对你有帮助,请给我一个最佳答案!  
|
|