一维数组的冒泡法排列
:image/png;base64,iVBORw0KGgoAAAANSUhEUgAAALUAAAHnCAYAAAD+YhzhAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAAEnQAABJ0Ad5mH3gAACZwSURBVHhe7Z0JmBTVtcfLxCUmooa8F5cYIz6TGOkommiUF1kUjcYWIQpqEEERlNA8RBSFMAiiwEiziYrIPqyOLTsCgqioiAquKAgquKIIsojGxOW8OreqeqqrbvX0MLduN/f73+/7yVgzXd1d/avT5+7Wzp07yc+OHTty+Pzzz7Ns3749y7Zt2wSfffZZlq1btwo+/fRTwSeffJJly5YtWT7++GMAasW7775LkydPprfeekv4yMfYLf45R+pChPZk9kvtlzkosfciPvrooywffvghALXinXfeoUmTJtG6deuEg3yMPdu1a1dhUntC+6X2R+egzH6JvRfxwQcfZHn//fdBCbN582YRAd977z3p70uBjRs30sSJE+mNN94Q/vEx9oy9jZS6OqGD0dkvcz6R+UKB0ubZZ5+l4cOHC3FK9TPjm278+PG0du1a4R4f49fKnlodOnQgjzZt2tD5558vOO+88wS33XabVGiWmfHLzHnOvHnzKJPJCB5++GGqrKzM8tBDD9WIWbNmia8X/qqJYs2aNdLHFsLixYul59wb+H337t1bXMN8NG/enJo0aZIDCyQ7px+OSjfddBO1b99eylVXXUXNmjXLnrNbt27S8xTCk08+SXfeeae49vyZyv5GRtzXwM+bb75JY8eOpVdeeUUETT62adMm4aR1zz33EDNy5EgaMmQIlZWVUZ8+fejmm2+mc845h1q3bi0VmmVmWGYvEvPdM27cOCHj9OnTadSoUeLc3vk9RowYURCjR4+mV199ldavXx/JihUr6N5776U5c+aINyk7TxT8GmXn3BsGDBhAf/3rX2ngwIHi5yj4Q7/xxhsF119/PdWvX59uueUW6Tn9XHPNNXTFFVfQHXfcETonC8jHu3fvTjfccAM1atSIWrRoIT1PISxdupT69+9Pr7/+uvhMZX8jg19LnNfAD3vBfrz44ovixuNjGzZsEBmCFUw3vJSD/4AFv+6660JCc7rhRWeWme8QvlM4vxkzZgwtWLBAREK++4YNGyYYOnRolnQ6XRB8U/CLfu211yJ5/PHHxY3CUZellp0nCq49y85ZCHwzcfRk+OfOnTuLIMDRjd/71KlT6bHHHhMXX8bLL79My5YtE/Lxhyx7Dj+NGzcWz8E/r169WkRFfl5+/0uWLBHnYzjKstwcuYPnKJRHH31UfPb8Lchiy/5GhncN3n77bfE42fv2U9Nr4Ie9YD9WrlwphOZjnIqwhxZbHvyK4VyK8yq+OJyWBIX2IrQnNP89f5j8IjlqsjAc9Zm7776bysvLBYMHDxYMGjSoIPhmeOaZZ8QbiGLRokXSxxYCf6vIzlkdTz/9NI2yb86Gv/2NgH9u27YtNWzYkObZ3xgX2v82PPG31N2OQvytxR9cEBZxypQpdOGFF9Ktt94qfR4/Z599NnXq1IlWrVpF8+fPFwI98MAD4n1wisiS83PxMf6Kv+yyy8RN5cE3Pcvqke+68rder169hDB8A8n+Rga/Pr752IPly5dL37efml4DP/z62Y8nnnhC3CB8jG9CTkuE1EGhOeLyBxclNUdpTjk8obt06SLgr76//e1v4s5TAZ+Lz+mdXwa/PtljC4G/zmXnrI6LL76YmtQ/ia771S8F/PMJJ5xAxx13HJ3RoAFdc0qCOp5wPDWrZ///GWdQx44dc7jO/vbjdILl49/zhyp7Hj+nnXaaEMZ7/NVXX03t2rUT/7LA/LtTTz2VTj75ZPF1zpxyyilZTjzxRKpXr16WVq1aSZ+H4Ryd0wi+cWS/j4KjNL/OVColBA++bz97cw38eK7x83Tt2lUc4+fluoTFuSXnQHyns8hsP9+d/NXmSR0UmvMWrm3y1wxHaD4hCkqpFGvmzJmiEZtzM/66qaiooJdeeikktT/tYKm5LdOL6pAapZSKxRVCFpgrd1zr5QSf8aS+9tprQ1Gac2lOW/ix/LeQGqWUisVScgrCzSvcMuFJ/dRTT4ljLLU/SnMuzakH599e0wqkRimlYrGc3ID9wgsviFw6SmovSrPUnHpwPs01TX4spEYppSIqitx4zz2A3MzCzXDcPOKX2p9L+5vxOJ/m5htIjVJKxeJOAm6v5TZDbv3gDglu75NJ7fUcstScT3NjN1cqITVKKRVr9uzZIvXgiqFXUeSUghu1Pan9FUTOp7mSyN2n/LecskBqlFIqFjdgs9jclMc9gV7vDDfxcUN2UGrOp71KotddCalRSqlYxx37CzEwhHNjFpQjL0duT2ru9fG3eniVRO504RuA/xZSo5RSsZZlhtG1V18uehV5HAWPzeBUJEpqr5LotXw8//zzBUv9+to3KDN7QY0YP6WSRoyeREPvnUCTpmWo7K6RNH/hIvruu+/cs6Kg5Bbr+6fa0fThN9BN/9dJDDflgdc8mCkOqVc9v5pef9POxd9YVwvW0/SHMvTVV1+5Z0VByS3Wjvst2rH8Ohpddj61vuAkMfaZK4neSDCWOlhJ5JYPT2oeNVYTqXft/sKOst9Wy7fffkPffOPAP3vH//3vfwupv/zyS/esppS11K++RVb9fvZPppVKamW1sv+7F2VtP6pv1ey6WI+WWfRoH4sW2vRtbVHdunXF8EUeC33ppZeKUWCqpZ70yDNUNvpR6jtmId0+diH1H7+A+k+cTwMmz6Oxjyylf/3rK9q27TPRlMjwZMr3tuygDoPm0SNPvl6t1Gv71SeLL0QO9alf3qvCF96iVhFXXnpOpQLqkjr/+6wqzt/536/zmEIf7y97KXVlq+zziutf0LVZS9bP6ljkUedgiw488EBq0KAB/eEPf6Cjjz6aLrjgAuVSD6lYTi37TaVLB1RQq8GT6PKhE+jKkeOozX1jaNDMufTFF7sCUu+k9z7ZQZ2Gz6I5q14pTOrgBfDu+DyfRmWraKnC59xXImtYwnzvk4t3AwcvVWUrJzBU9/hwqanU7rUNPkZIni84uTeibA7h3LlzBTzHkCuPqqR+btWLtH3HLrq38im6dthD1GHUDLrm3gr6+z1j6Yp776crR4+iQZWzhNSff75dDKRivvhiN72/dTt1nTCD5r+0miqmV9ZcalGcN10/6qoI8eUXLd+NUrOopbuEpc73PqsXxy55Hi+EZ7EKJeeaejLnu6bVC58zncubYOtNCgiOzKut1M8+9wJt3b6Dxs19hjrdN4MuHTKGLiofScmhw+iSe9LU8r5y6j9zppCaUw5vetmXX+6hD7Zvox6Vk2nha6to4pQZeym1+7vsBQlGW+f/ZdLLz5krjBfBKsVzBD4w75vCRzgSBh7DJfi40Gvg4kaowN8479V33MZ5b1HvM/r955ZC/84r/PryR2rnZvBuFPdzCbx2B+887nu2L2LuZ2OnH8WQemRmGV00aBRddPcIunj4ULpk1BBqObqcLhs7kAY8PF1IvXv3Lvt1bRew1B/u+Ix6zx9Di9c9XSupHUkCF8//t+KOD38A0nMGIlY2SoVtFcdzDruy+sUISR2KmlGvNyCYfe5+2eeSRGousvfpvqbQ38pKxHWSl+qlVlmKInX5zAWUTA+n5iOHUov77qZLxwymVuPuossn9ae7Zk0RUvM6JNvt6Mzs2fMFfbzzU+r/+HBauvEJBVLn++DkEoTPWRUpvOJIHfzwnL+TRTVxTt/f50rtCBx6nTk3kit5XgsjpJYdzzl3dSX8eOf98DWoGdlr496g4d/JI7fsmnIpitR3PzzfSTfuL6dLHxxIrccPoCsn96c20/rSoLmTabedenAe7by2z8XPu2zR129ZTx9s+0hhpJYXIVfAAtkHFryooUjLJd9NFIjEOY93Hxd8Tg9xvnznzpYoqSXvs0ZSSx4vLc7zi9cd9Zl4ha+H72/4/H6p/U9V9buqkv2MiiH1kFlz6W+jB9NlD9rReYItdEU/ump6GbV7qDeVz59Iu3by69luvwanosivi3Ns8Vrtf9Xl1BFF8uHmvVHckiOlV2opdV5nail1+H06fxsVAUNFcp1yivg9X2s+r/1v9v8jyl5KLa6beN2VTkQvhtRD584W6cYVdrrx9ym3U9vpfah9ZS+69pGeNGTheBGd+bXwa2Cp+fV4r+/zHTtrIXWhH5pzEf1/t9dS53nO4A2W+/hCXmvhfyMXP/w+HUGquemzJfx4r+S+N34N7s/5bsRaRmrv7yyWk+EB/zw+muEhpTxYiaXl8dLe2g/cJf7cc8+Jcdfc68jrSXDPI4/kK6R4Uk9e+BgNfGQGDZ49jcrnTKUh8ysovWASDV04kcYvmCXkZZG9dmoW27vZPrdvwL2SWkRF+w3nXE33IkhkDZ5j76V2Hxv8IN3XE/ygQs8ZfBxL4TsQde6q/88vfvh9udckFIH5eDgqhx7vvq/c5/NJLYr3HIGbx/uMfORK7bwX53eybwj3vMF2ap5dzvCSXNOmTRMrDfGCIzx5gGedT5gwQayExL2OvHCN1/NYSPGk/vrrf4k8OYfd3IznLFLJqQa3flQtWlm1elTB6YfvwjjIoo97EaSy5ka48IcfLlFSixL6wMIfiuzxofciO3/w3DmG28X3+7Dcue/TK+FrGJVmVD1evH7pdQ5K7RVXUu/J+XX63h+fL1dq53h0cT9PloPZs2ePLdcXtkx2pczNX1kijpDBVMS/PALPkuHFRAopr7z6Os1aYEf3RY/vNXMXLaMp02ZqGdAkPqTqr6Syovv5vFLb563+8VFSF1pqKDWL7JfZi45efi3LrTmv9s984ZVxCik8XJRTCR7xVxs4Dfn+++/ds8ZYqqsIKS3OBxKVJsRaavs+tV6n6ovWiiJKniJShNIRY18ukLrIxZ+7FiHzMLJAahTjCqRGMa5YvKUCc+655+bAy7IyTZs2FfAWBrxuMaRGKfVi9W/3K+rf9ijqf9VR1M/l9jbMkdT370fSLS1+Sq3PsOjgAy0xfxFSo5R6sbZU1KdtFcfTZzZbJx9Pn06qR5/YbJlYjz4aX4/WDj+CJnSwqO5PIDXKvlGsKZ0PoCd6WvRMb4ene1m0wuap2yx64laL5naz6K5WFh12MKRG2TeKdUy9g2hkmx9AahRjilXn6IMofQWkRjGnCKkvOOUA6tB4f7q95Q8hNco+X6xfXHQAHdnYptEBdNZ5B9CwK39Ay26pudSHHHIIACWBdc6yw4k5e9GP6He3/4B+8bOD6JHUfvSkLTSkBvsi1p1f96M7v76drn6jsZD6qLoH0dj2+9FjN0NqsG9itXz+RGKaLf+vrNRj2u1HS3rspdSJFKUzq8WQVCaTTlLC94QAxI11fMf96birbNrsT6e23J86NvmhnX5Y9HjPvZDaFjqzOkOpZMJ9ggQl07bcttj+JwUgTkTrx++PPZD+/NsDqP2f96cFtsRP2pXEmlcUE5SyI3Qm5QntkaS0HbHTSf8xAOJDSN374h/QI10sWnjj3rdTR8vryI5oDXSRlXpRd0fmvZbaSz0S4ScRKUgmhdwaaMHqcfEPqbLLfiLlqE2PIqQGpYI1u9uBQuDadpN76UcopxayQ2qgD2thzx/T4pssWuTyqJ2GLLRZYOfX822hp19vUVlziw79UXVSH0KJVIZW+1s/ErbotswpRGqgEau8zcFUfrlF5a0tGuwyyI7MA23uusyiPrbQbc+06McHVS81k0ilncgsonOakglUFIFerDo/2o/q2FE4ip/YHHyARfvtV5jUYSLSEgBiwuItMDz8W2TMmDEju/QYLzvGO+Lyuno1ljpPBRKAOFA2m1yckAXmlMP3BGj5ALpRK3Uy7VQU3aicrTgiSgONqJVajPVgkf0VxfCTAhAniqUGoPhAamAckBoYh8ULp3tbY/B608xrr70mhH355ZfFouq8NcYLL7wgBF65cmV2e4wlS5Zkt8eQnRyAYmB522EwXts0422Lwe3TvDXGxIkTxdYY48aNowcffJDuv/9+uueee2jo0KFiewzZyQEoBhanGAxvGMSpxkcffSTSDV6xn9ONTZs20TvvvENvv/22SDvWr18vojpHcY7eK1asoM6dO0tPDkAxiCWnTiT98xQzlEYXOdCI5e2j4knLmxQxLK8XnXl/l3Xr1oncm3NujtKcZz/77LO0fPlyuv7666tOKjpgfO3T9v/zACdM5wK6sDi9YFhiL83wpxp+mbkCyUJzBOb9FDn1WLp0KXXs2NE9IQ9eCvQgul3n6FUEulCafiS4WxzjPECRUSg1xk2D0kCh1L5x03bKkVNRzK4DAkD8WNt9Um9eu4qWju5OvXt2pxtvvJG6detG//fPfnTzqCk0+Y4eVNY9Rf/4xz9EE16nTp2oQ4cO1L59e2rS5C/2yVyp02lKp1PZimICFUWgGWtiRYXoYKmYuZCmTqqgSX0upFYtTqcTf34c/frXp9JZV7ali2/uS6nfn0Dnnn0W/e9fmtL/nt6A/uenx1D9sxtRwyan0km/aWCfzJFallOLXBtpCdCEdUCdn9PPjzqGfnlyC2rZYyqt2fYhbflsGpWd35Fuvnkszfl4A7316jzqc2ZzKrtvAk15ej5NGTGA2p+cpJ4zKmninEF04dmN7ZPlmbblNfMFjwMQA9aJHabRtKWv0sZ3NtOm9z+mT22pPwtJ/bAt9VF00hGH0mF1D6fD6hxCB+9/EP34sMPo0MMPoV8e8zv7ZJAalAbWIceeRqed2Ziu/ucDNH4lVxRlUs+1pW5GXfvcQQMnjaKBPbvQJb9pRNeWp+mOEd2o6Z8a2ifL0/rBUqOpD2jCKisro/bn/oZaXncr9X00Sur5ttSX090zF9CSd1fTkqn3UdfTW9Gg5StowaoHqcU554iTidxZMn0LK58CnVivbNlKT00pE8sfTFi2gTasmE4zpt5ErRqcR5dc0pn6zJxCFXOmUc8/NqHOPXtT39FDqKxbR7rohIZ0Vf8B9M/BN1Cj089yT+hGazsqV7V+YDY50Is1Yt0mWuc26b3/0hJa3KshnfzbI+nwg+vQoYfWpeMankvn9BxGXU4+kk4+1q5U/uIoOuK/6lKdA39Chx9xBP38yLr0q2NP8p3UFhvzFEERse73Sb1t6ye05f03aOOGB6hH07bUpcswmrpuDb34/Gz6559a0h1jp1PlmmX08Ohy6njqJVQ2ex5NXzyMLmrcRHpyAIqBNdIntdOjGMypP6D33l1HK+cvo1WvrqW1oZx6KXVo3156cgCKgfXUB1vow3xSb15LG1ZWUHnPm6h7ly7UufM1dEXzv9DpR/2OmrRpS63btaMmTRCpQelgTZ68mJ5dv4neC0l9GbVpfgPdOnYU3TuyF93Qsjm1uPBCuuCCc+jPpzegE356DCXObkwNmzalP/7xj9KTA1AMrMMP+iv1mPkErbSl3rrlQ9r81vP06isjqfsFZ9Fp/300HdOgGTVIzaSX33jbHdAUTD8wmxyUFlavP7WhEfMcqdeteJjuu6wu1TuqDh3foj/dPvEZWvvmelq74V3abAsNqcG+gHXC4c2pV6Uj9ceb36LXllfS7Ecqac6TL9GadWtpzbLJVH55E/pL08bUuHFjatToTPrD739Hxx56JP369DPotDPPpAYNeECTe9KcYado0gP6sfr2nUjz1qynjdmc2j+e+l1684XFNHPQbdSn163Us2dPuuWWW6hHjx5iaGrXrl3FMNRmzZo5JxRjPDK+fRSdoadYJBLoROl0Lu4Olw1oQjc50Iny6VyyyQAJjKcGGlEeqaMmCWB7DKALpVJXzX7xVQ654pjGsFOgD/WL2Xgj9Wy5M/a/GaQdQDMWR2HGLzbjraG3ceNGITYvbMPRmdfR4wjN0vIKqLz6aZXUPELPXbgmkcyO1kPqAXRiff/998R899139O2339I333xD//nPf+jrr7+mr776ivbs2UO7d++mnTt3ijSF0xNOS/gmYOk5enPzHp9M1vrhNOlhNjnQh0KpOZ+Wz0NE6wfQiTqpec28qMm1mKMINKI4Ust7DhGpgU6U5tRR3eSYowh0olZqm9wF17lZDwOagF6USw1AsYHUwDggNTAOSA2MA1ID44DUwDgUS101Qi8Ixn4AXSiWOknpdJISiUSI4BMDEBexSB18EgB0olzqFMZOgyKjVmqeugWpQZGJRepEytlmTlQSsYUz0Ix6qW2JqzYDTVBSbJkRMc4agBhQnFPbEod2t3Wa+TBPEehCsdRysEIT0IlyqWVTtjDzBehEqdQiIkvyZ0RqoBOFUrtd5CF5nVWb0E0OdKE2/eD5iL49FEXFMSJ6AxAX6nPq4BzFtF9yAOJHudQAFBtIDYwDUgPjgNTAOCA1MA5IDYxDrdTuWtRSsOop0IRSqcUYD9H5EpijaB9HjyLQhVKpkylZzyHmLQK9qI3UklnjPAsGM1+ATmKuKHKURi4N9BKr1MilQTGIUWoeiorReUA/8UnNzXuoIIIiEJvUsj0VAdBBTFJjtgsoHvFILfZUxI5coDjEI7XbXY5IDYpBLFKL7nJIDYpEjJEa6QcoDjFVFAEoHpAaGAekBsYBqYFxQGpgHJAaGEfMUvNIPTTtAb3EKrXTCQOpgV7ik1qM/+CZ5JAa6CUmqZ20I53k0XqQGuglFqk57ciICQKQGuhHvdScdmQXroHUQD/KpU6m/RJDaqAftVLz9hg5U7ggNdCPQqltgaWbGEFqoBd1UudbHNIFkwaADtRXFHNApAb6gdTAOOKV2p1VjrQD6CQeqbNd5H6wBBnQQ8zpBwD6gdTAOCA1MA5IDYwDUgPjgNTAONRLnUhROlPVlMfjqrHnC9CJWqnFWOo0Jb0exETSERw7CgCNKJVaTLQNCozFIoFm1EZqHk8d3K7Z7SqH1EAX8VcURaRGFznQR6xSJ0SlEVEa6CUeqbMDmniEHnboAnqJN/1IJCnFrR/BPBuAGIk/pxYTBTCVC+hDg9TORqFoqwa6UCp1IpWW9iBCaqAThVLz+nmy/NlJP7ClM9CF4kidsaX2dZPboosozcd8TwpAnCjPqRPcq+gOZnIGNKHlA+hFS0URAJ1AamAckBoYB6QGxgGpgXFAamAc8UnNU7nQiwiKgGKpE5RKZyjjTbyF1KAIqI/UiQQlbDDeAxSL2NIP6SRcADQAqYFxQGpgHJAaGAekBsYBqYFxQGpgHJAaGAekBsYRk9TcXb46MF8RAD0oltqdUe6bo+iAibdAH7GlHwAUC0gNjANSA+OA1MA4IDUwDkgNjEO91GKbuUxVc14mje0xgFbUSi32UcxQKrslRoKS3LOI3bmARpRKzfMSw0v2Oh0yWMoX6EK51LLeQ0zCBTpRnn6kU/KdBBCpgS7UVxRD8E4CyKmBPmKXOsmL2yBKA43EK3UybacjEBroJT6pITQoEvFIDaFBEVEvNbeASJrveH294DEA4kCt1KJHUbYbF5b1BfpQKDX3HHLTnbPqqR+0gACdKJTa2dk2d25iFdhwH+ginooiAEUEUgPjgNTAOCA1MA5IDYwDUgPjiEFqp13aa8rLpMPjqwGIE+VSi1kumZS7MKS7th56E4FG1ErN3eTBCQGyYwDEiFKpvSidm25g4i3Qi0Kpo1MNuewAxINCqZ2xH7KILHYVwBrVQBOQGhgHpAbGAamBcaCiCIxDodRo0gOlgVKp0fkCSgG1UtugmxwUG+VSs8gY0ASKSQxSA1BcIDUwDkgNjANSA+OIT+pE0m0BiSAp33VADreiZMTfJ5PVkEpHLH0Whns6M+mU/Dw2KawstU8Sm9SiazyTjhY7mfY1/VUPNxUGV3kSzxFsLhTt4nme14f08T6836P1Zt8iJql5HEg1HS4sdQ3ar2skdQ0idXVSI1Lve8QjtS0st0/nHAsikTrfcr8sdSaQfnB6IKK971hN04/Q430g/dg3iUFqO/9N+0fk2XLYYiQ4x/ZLExTKljHfQpKI1KBQ1Esd2EXAiYZOjpsjGtIPEBNqpeZ9ydOOUM7a1CxYxDjqUpEa6YdxKJVaSCLGe6TtlCMlNt6PSidCUufJp5nYcuq8kdr+1vH2Wa+uiRKUDPFUFG0cIfzH7MidI59fSFvEiFkz3mN5tF+NIrXI4X3Hxe98z18jnNe3GkNo9wnikdqWQL47Vw2/ynlrDalkDtJILbC/JVwJQzeC/2db8pyIXsOUCJQm6qW2I6W3aZHY74Xls1MRUVG0I6u8B89LVQqV3h2nXavo6Z7Dn6pAaiNQXFG0v/qFaHYqYVcQU7akOZGRpY6I4M4mSMHjcji/Zvmc9CMVaEIsFGeicE4kj5KaK73BY6BkUR6pOW+OEkCF1EJkN7o6UtsSeq0sNYnYLHBwhjsfC6Uzbj7tj+igpImtouiHc1cRtWsptXi8r4kwKzX/v5C08BRGtKbYEZ5TpaysUZEa7FPEI7XIpTm3dnNoV9baSC0e67aB+4/lSOhGVf9zShFpkntz8GO8KA+pjUCp1EIykVM7w0SDX9eemLlf74xTUZRLbQtv3xyyCBySmuGKqleJtM8ZfpxzA+Xk0m5dIGMfh9T7Psorijlf5wGE1DWI1AkR7aPP51UYw79zJv/KboTo3Xftx3DHjXszcPROi/QkSPTrAaWBlpzagztkUsEOEQELVXNZosSNgqUtpDKabR/nDiQhMksedTOAUkOr1ADoAFID44DUwDggNTCOGKR2Wh6cpj1uM0ZrAdCLcqlFMxt3NYtWBm6qi2p2AyAe1EotOjEC7c2yYwDEiFKpvSidm2440RptvEAXCqWOTjXksgMQDwqlxkZGoDSA1MA4IDUwDkgNjAMVRWAcCqVGkx4oDZRKjc4XUAqoldoG3eSg2CiXmkXGgCZQTGKQGoDiAqmBcUBqYByQGhgHpAbGAamBccQndSIpVjMKHQcgZhRLnXA2/+EOF26nhtSgCKiP1LxAOS/bxT2LkBoUgdjSDzHcFFKDIgCpgXFAamAckBoYB6QGxgGpgXFAamAckBoYB6QGxhGT1NxdvppW13QXWgAUoFhqd6KtOz+xCixkA/QRW/oBQLGA1MA4IDUwDkgNjANSA+OA1MA41EvNcxMzmarmvEyBm9wDoAi1UvMKp7bQqaS3bG+CktyziFVPgUaUSs3zEsPrUGN9aqAX5VLLeg8xCRfoRHn6kU6Fl+6VR3AA4kF9RTEEb3CEnBroI3apeQF2RGmgk3ilTqbtdARCA73EJzWEBkUiHqkhNCgi6qXmFhBJ8x2vrxc8BkAcqJVa9CjKdrbFsr5AHwql5p5DbrpzVj31gxYQoBOFUjsb7ufOTawinZS/AABUE09FEYAiAqmBcUBqYByQGhgHpAbGAamBcaiXmnsUfUuPZdLh8dUAxIlaqUWPom9RSDEJ15YbvYlAI0qlli7fm0zbERuTBIA+1EZqW+DQ2A+O3pAaaCT+iqKI1FjKF+gjVqkTotKIKA30Eo/UIuXg1o8MpbML2wCgh3jTj0TS2VlAOsYagHiIP6d2h6Ri6CnQhQapsUIT0ItSqROptLQHEVIDnSiU2t2ZK5Q/O+kHpnMBXSiO1JnA3ok8P5FFRzs10IfynDrBvYruYCZnQBNaPoBetFQUAdAJpAbGAamBcUBqYByQGhgHpAbGEbPU3vp6st8BEA+xSi06YzDrBWgmPql9Y6ohNdBJTFI7aUc6yeM+IDXQSyxSc9rBo/Ww3RwoBuqlFmt/eOM9IDXQj3KpedeAKokhNdCPWql5hF7OuGlIDfSjUGpb4NDsFkgN9KNOarFoTdU4ahmYfAt0oL6imAMiNdAPpAbGEa/U7uKQSDuATuKROttF7geTb4EeYk4/ANAPpAbGAamBcUBqYByQGhgHpAbGoVhqd5HIUHMeusiBPhRL7QxqSiQSIYJPDEBcxCJ18EkA0IlyqVNYhxoUGbVSJ1KUhtSgyMQitdgmw6skZtIYpQe0ol5qW+KqvRMTlBQL2mAwE9CH4pzalji0GajTzIc9X4AuFEstB7tzAZ0ol1q2v4tYUw9SA00olVpEZEn+jEgNdKJQareLPCQvz1NENznQh9r0gxezyaTC+yii9QNoRH1OneRmPRbZgfdRrJIcgPhRLjUAxQZSA+OA1MA4IDUwDkgNjANSA+OIRercZr0MxlgDraiXWqxTna5qm+YOGfQoAo0ollqydC8vFomJAkAjSqUWo/GyO3MBUBwUSh01oAkAvSiU2hmNJ2a4iGldvopiaDYMAPGhXup0mtK+QUwJVBSBZpRLLcupMfMF6CSe9CP4RF4zX/A4ADEAqYFxKJQ6T+sHS42mPqAJhVK7ubNk30RMvAU6USp1Nlr75inyOBDeSxE9ikAXiqVmbLHTHLG5jZoF940DAUADMUgNQHGB1MA4IDUwDkgNjANSA+OA1MA41EotusPdprwg6FEEmlAqtTfzJRncR9E+jqGnQBdKpU6mZIOWkthbEWhFbaSW7GzLO3WhixzoJOaKIkdp5NJAL7FKjVwaFIMYpeYRe5gYAPQTn9TcvIcKIigCsUnNEwOwISgoBjFJ7cxXRD4NikE8UvP6eZjtAopEPFK73eWI1KAYxCK1MwEXUoPiEGOkRvoBikNMFUUAigekBsYBqYFxQGpgHJAaGAekBsahXuqcrTF4biKWHQN6USu11z7t2+OFt8dAmzXQiVKpo0bmYSlfoBOFUjvL+Mq6xkW3OaQGmlAeqaM2MsLYaqALxRVFZxx1TuWQK46YfAs0olhqxt1NwJY7Y/+bQdoBNKNYat5FwF3nI5HM7iiA1APoRHlOHRTYadLD2GqgD4VScz4tXxIBrR9AJ+qkFvMSI9b54GiNVU+BJhRHannPISI10InaimJENzlmlgOdqJXahjcD9Q9oymBAE9CMcqkBKDaQGhgHpAbGAamBcUBqYByQGhiHeqkDcxR5lB56EoFO1ErtLeGb7XxJYCoX0I5CqZ1x1OFhpliAHehFodRR8rqTBhCtgSbUSe2lHpIu8ai5iwDEAaQGxqE8/Qjl1EJ2SA30oVBqd9y0v/UjYYtuy5xCpAYaUSo1wxvsi8gsojMPO0VFEehFudRhItISAGIifqnzVCABiAO1UrPAgU320fIBdKNW6sCyvdmKI6I00Iji9IPHejirMlVVFMNPCkCcaKgoAqAXSA2MA1ID44DUwDggNTAOSA2MA1ID44DUwDggNTAOSA2MA1ID44DUwDggNTAOSA2MA1ID44DUwDggNTAOSA2MA1ID44DUwDggNTAOSA2MA1ID44DUwDAOof8HmypE3E1338MAAAAASUVORK5CYII=这个是int型一维数组的排列,要求是用冒泡法排列10个int数字。程序的编译是没有问题的。我在输入99等两位数的时候结果是错误的99消失不见并且不知道为啥多出了26。但是在输入个位数的时候结果是正确的。有图片。
#include <stdio.h>
#include <math.h>
/*********************
用冒泡法(起泡法) 对10个数排序(由小到大)。
冒泡法的思路是: 将相邻两个数比较,将小的调到前头。
*********************/
int main()
{
int i,j,k,a; /*i是动态赋值需要的和计比较的次数,
j是最后比较要用的计次,k是为了承接数组的值 (交换)*/
for(i=0;i<=9;i++)
{
scanf("%d",&a); //输入比较的10个数
}
for(j=0;j<=9;j++) //第几趟比较
{
for(i=0;i<=9;i++) //第几位比较
{
if(a>a) //判断前一位和后一位的大小,如果前一位大于后一位则替换
{
k=a;
a=a;
a=k;
}
}
}
printf("结果是\n");
for(i=0;i<=9;i++) //输出结果
{
printf("%d\n",a);
}
return 0;
}
以下是使用冒泡法对一维数组进行排序的示例代码:
def bubbleSort(arr):
n = len(arr)
for i in range(n - 1):
for j in range(n - i - 1):
if arr > arr:
arr, arr = arr, arr
# 测试代码
arr =
bubbleSort(arr)
print("排序后的数组:")
for i in range(len(arr)):
print("%d" %arr, end=" ")
运行结果:
排序后的数组:
11 12 22 25 34 64 90
以上回复来自 -- ChatGPT(FishC官方接口),如未能正确解答您的问题,请继续追问。
页:
[1]