快速收敛 发表于 2025-4-29 16:34:16

MCP官方示例+Cherry Studio尝试

本帖最后由 快速收敛 于 2025-4-29 16:33 编辑

MCP文档Model Context Protocol
按文档一步步安装,并创建以下代码:
from typing import Any
import httpx
from mcp.server.fastmcp import FastMCP

# Initialize FastMCP server
mcp = FastMCP("weather")

# Constants
NWS_API_BASE = "https://api.weather.gov"
USER_AGENT = "weather-app/1.0"


async def make_nws_request(url: str) -> dict | None:
    """Make a request to the NWS API with proper error handling."""
    headers = {
      "User-Agent": USER_AGENT,
      "Accept": "application/geo+json"
    }
    async with httpx.AsyncClient() as client:
      try:
            response = await client.get(url, headers=headers, timeout=30.0)
            response.raise_for_status()
            return response.json()
      except Exception:
            return None

def format_alert(feature: dict) -> str:
    """Format an alert feature into a readable string."""
    props = feature["properties"]
    return f"""
Event: {props.get('event', 'Unknown')}
Area: {props.get('areaDesc', 'Unknown')}
Severity: {props.get('severity', 'Unknown')}
Description: {props.get('description', 'No description available')}
Instructions: {props.get('instruction', 'No specific instructions provided')}
"""



@mcp.tool()
async def get_alerts(state: str) -> str:
    """Get weather alerts for a US state.

    Args:
      state: Two-letter US state code (e.g. CA, NY)
    """
    url = f"{NWS_API_BASE}/alerts/active/area/{state}"
    data = await make_nws_request(url)

    if not data or "features" not in data:
      return "Unable to fetch alerts or no alerts found."

    if not data["features"]:
      return "No active alerts for this state."

    alerts = ]
    return "\n---\n".join(alerts)

@mcp.tool()
async def get_forecast(latitude: float, longitude: float) -> str:
    """Get weather forecast for a location.

    Args:
      latitude: Latitude of the location
      longitude: Longitude of the location
    """
    # First get the forecast grid endpoint
    points_url = f"{NWS_API_BASE}/points/{latitude},{longitude}"
    points_data = await make_nws_request(points_url)

    if not points_data:
      return "Unable to fetch forecast data for this location."

    # Get the forecast URL from the points response
    forecast_url = points_data["properties"]["forecast"]
    forecast_data = await make_nws_request(forecast_url)

    if not forecast_data:
      return "Unable to fetch detailed forecast."

    # Format the periods into a readable forecast
    periods = forecast_data["properties"]["periods"]
    forecasts = []
    for period in periods[:5]:# Only show next 5 periods
      forecast = f"""
{period['name']}:
Temperature: {period['temperature']}°{period['temperatureUnit']}
Wind: {period['windSpeed']} {period['windDirection']}
Forecast: {period['detailedForecast']}
"""
      forecasts.append(forecast)

    return "\n---\n".join(forecasts)


if __name__ == "__main__":
    # Initialize and run the server
    mcp.run(transport='stdio')
在Cherry Studio添加MCP配置
测试勾选MCP,使用qianwen-max模型,可以看见模型还是很给力识别到了工具,并调用了工具函数get_forecast获取了纽约的天气,总结输出。
有点意思,但是不知道能干嘛!
期待小甲鱼出MCP教程{:10_254:} !

不二如是 发表于 2025-5-4 16:38:11

不错!!MCP案例欢迎多分享
页: [1]
查看完整版本: MCP官方示例+Cherry Studio尝试