欧拉计划 发表于 2016-11-6 16:04:40

题目198:歧义数字

Ambiguous Numbers

A best approximation to a real number x for the denominator bound d is a rational number r/s (in reduced form) with s ≤ d, so that any rational number p/q which is closer to x than r/s has q > d.

Usually the best approximation to a real number is uniquely determined for all denominator bounds. However, there are some exceptions, e.g. 9/40 has the two best approximations 1/4 and 1/5 for the denominator bound 6. We shall call a real number x ambiguous, if there is at least one denominator bound for which x possesses two best approximations. Clearly, an ambiguous number is necessarily rational.

How many ambiguous numbers x = p/q, 0 < x < 1/100, are there whose denominator q does not exceed 108?

题目:

在分母界限为 d 时,定义实数 x 的最佳逼近分数形式为 r/s (已约分),并且 s ≤ d,那么所有比 r/s 更接近 x 的分数都一定满足 q > d。

一般来说,一个实数的最佳逼近对于所有分母界限都唯一存在。然而,还是有例外,比如 9/40 在界限为 6 时,就有 1/4 和 1/5 这 2 个最佳逼近。如果一个数字有至少一个分母界限,使得它有两个最佳逼近的话,我们就把它叫做歧义数字。很明显,一个歧义数字一定是有理数。

请问,对于条件分母 q 不超过 108, 0 < x < 1/100,存在多少个歧义数字 x = p/q?



页: [1]
查看完整版本: 题目198:歧义数字