题目230:斐波那契词语
Fibonacci WordsFor any two strings of digits, A and B, we define FA,B to be the sequence (A,B,AB,BAB,ABBAB,...) in which each term is the concatenation of the previous two.
Further, we define DA,B(n) to be the nth digit in the first term of FA,B that contains at least n digits.
Example:
Let A=1415926535, B=8979323846. We wish to find DA,B(35), say.
The first few terms of FA,B are:
1415926535
8979323846
14159265358979323846
897932384614159265358979323846
14159265358979323846897932384614159265358979323846
Then DA,B(35) is the 35th digit in the fifth term, which is 9.
Now we use for A the first 100 digits of π behind the decimal point:
14159265358979323846264338327950288419716939937510
58209749445923078164062862089986280348253421170679
and for B the next hundred digits:
82148086513282306647093844609550582231725359408128
48111745028410270193852110555964462294895493038196 .
Find ∑n = 0,1,...,17 10n× DA,B((127+19n)×7n) .
题目:
对于两个数字字符串 A 和 B,定义 FA,B 为序列 (A,B,AB,BAB,ABBAB,...),其中每一项为前两项的和。
进一步,我们定义 DA,B(n) 为 FA,B 中第一个至少含有 n 位数字的项的第 n 位数字。
例如:
设 A=1415926535,B=8979323846。我们希望求出 DA,B(35),如下所示。
FA,B 的前几项为:
1415926535
8979323846
14159265358979323846
897932384614159265358979323846
14159265358979323846897932384614159265358979323846
因此 DA,B(35) 为第五项的第 35 位数字,也就是 9。
现在我们设 A 为 π 的前 100 位小数:
14159265358979323846264338327950288419716939937510
58209749445923078164062862089986280348253421170679
并设 B 为接下来的 100 位小数:
82148086513282306647093844609550582231725359408128
48111745028410270193852110555964462294895493038196
求 ∑n = 0,1,...,17 10n× DA,B((127+19n)×7n)。
页:
[1]