题目238:无穷字符串之旅
本帖最后由 欧拉计划 于 2017-1-6 02:26 编辑Infinite string tour
Create a sequence of numbers using the "Blum Blum Shub" pseudo-random number generator:
s0 = 14025256
sn+1 = sn2 mod 20300713
Concatenate these numbers s0s1s2… to create a string w of infinite length.
Then, w = 14025256741014958470038053646…
For a positive integer k, if no substring of w exists with a sum of digits equal to k, p(k) is defined to be zero. If at least one substring of w exists with a sum of digits equal to k, we define p(k) = z, where z is the starting position of the earliest such substring.
For instance:
The substrings 1, 14, 1402, …
with respective sums of digits equal to 1, 5, 7, …
start at position 1, hence p(1) = p(5) = p(7) = … = 1.
The substrings 4, 402, 4025, …
with respective sums of digits equal to 4, 6, 11, …
start at position 2, hence p(4) = p(6) = p(11) = … = 2.
The substrings 02, 0252, …
with respective sums of digits equal to 2, 9, …
start at position 3, hence p(2) = p(9) = … = 3.
Note that substring 025 starting at position 3, has a sum of digits equal to 7, but there was an earlier substring (starting at position 1) with a sum of digits equal to 7, so p(7) = 1, not 3.
We can verify that, for 0 < k ≤ 103, ∑ p(k) = 4742.
Find ∑ p(k), for 0 < k ≤ 2·1015.
题目:
通过 "Blum Blum Shub" 伪随机数生成器产生一个数字序列:
s0 = 14025256
sn+1 = sn2 mod 20300713
连接这些数字 s0s1s2…得到一个无穷长的字符串 w。
也就有,w = 14025256741014958470038053646…
对于一个正整数 k, 如果不存在一个 w 的子串使得其数字之和为 k,定义 p(k) 为 0。如果至少存在一个 w 的子串满足其数字之和为 k,定义 p(k) = z,其中 z 为第一个子串的起始位置。
例如:
子串 1, 14, 1402, …
各自的数字之和等于 1, 5, 7, …
起始位置为 1,因此 p(1) = p(5) = p(7) = … = 1。
子串 4, 402, 4025, …
各自的数字之和等于 4, 6, 11, …
起始位置为 2,因此 p(4) = p(6) = p(11) = … = 2。
子串 02, 0252, …
各自的数字之和等于 2, 9, …
起始位置为 3,因此 p(2) = p(9) = … = 3。
注意子串 025 起始位置为 3,数字之和等于 7,但有更早出现的子串(起始位置为 1)数字之和等于 7,所以 p(7) = 1,而不是3。
我们已经得到,对于 0 < k ≤ 103,∑ p(k) = 4742。
求 ∑ p(k),其中 0 < k ≤ 2·1015。
页:
[1]