C++刷leetcode(990. 等式方程的可满足性)【并查集】
题目描述:给定一个由表示变量之间关系的字符串方程组成的数组,每个字符串方程 equations 的长度为 4,并采用两种不同的形式之一:"a==b" 或 "a!=b"。在这里,a 和 b 是小写字母(不一定不同),表示单字母变量名。
只有当可以将整数分配给变量名,以便满足所有给定的方程时才返回 true,否则返回 false。
示例 1:
输入:["a==b","b!=a"]
输出:false
解释:如果我们指定,a = 1 且 b = 1,那么可以满足第一个方程,但无法满足第二个方程。没有办法分配变量同时满足这两个方程。
示例 2:
输出:["b==a","a==b"]
输入:true
解释:我们可以指定 a = 1 且 b = 1 以满足满足这两个方程。
示例 3:
输入:["a==b","b==c","a==c"]
输出:true
示例 4:
输入:["a==b","b!=c","c==a"]
输出:false
示例 5:
输入:["c==c","b==d","x!=z"]
输出:true
提示:
1 <= equations.length <= 500
equations.length == 4
equations 和 equations 是小写字母
equations 要么是 '=',要么是 '!'
equations 是 '='
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/satisfiability-of-equality-equations
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
class Solution {
public:
char find_root(char x, map<char, char>&father){
if(father != x) return find_root(father, father);
return x;
}
void unition(char x, char y, map<char, char>& father, map<char, int>& rank){
char temp1 = find_root(x, father);
char temp2 = find_root(y, father);
if(temp1 != temp2){
if(rank > rank){
father = temp1;
}else if(rank <= rank){
if(rank == rank){
rank++;
}
father = temp2;
}
}
}
bool equationsPossible(vector<string>& equations) {
int len = equations.size();
set<char> store;
for(int i = 0 ; i < len; i++){
store.insert(equations);
store.insert(equations);
}
vector<char>store1(store.begin(), store.end());
int len1 = store1.size();
map<char, char>father;
map<char, int>rank;
for(int i = 0; i < len1; i++){
father] = store1;
rank] = 1;
}
for(int i = 0 ; i < len; i ++){
if(equations == '='){
unition(equations, equations, father, rank);
}
}
for(int i = 0; i < len; i++){
if(equations == '!'){
char temp1 = find_root(equations, father);
char temp2 = find_root(equations, father);
if(temp1 == temp2) return false;
}
}
return true;
}
}; {:10_298:}
页:
[1]