一道极其「烧脑」的概率题!可能只有「天才高中生」可破
本帖最后由 不二如是 于 2023-7-4 22:16 编辑题目:
一名学生要参加一场考试,他对这次考试的题目有90%的把握。然而,他担心自己会在考试中紧张,导致答错题目。根据以往的经验,他在紧张时答错题目的概率是30%,在不紧张时答错题目的概率是5%。现在已知他在考试中紧张的概率是20%,求他答错题目的概率。
欢迎鱼油们贡献正确答案和解题思路。
推荐答案:
**** Hidden Message ***** 我的答案:90%
解题思路:鱼币获得的概率是90%{:5_97:} 我的答案:4.5%
解题思路:(100%-(90%-5%))*30% 我的答案:ZeroDivisionError
解题思路:考试被取消了 我的答案:A
解题思路:蒙 sfqxx_小 发表于 2023-7-4 22:31
我的答案:A
解题思路:蒙
我的答案:无
解题思路:学生不存在 我的答案:10%
解题思路:答错的题目的概率只存在有把握的题目中,所以90%是无关量,只需计算5% * 80% + 30% * 20%即可 我的答案:50%
解题思路:因为丢硬币决定 我的答案:A
解题思路:蒙
巧了!我就是天才高中生呀{:10_256:}(自恋的微笑)
我的答案:10%
解题思路:
特简单,贝叶斯定理求解就行
然后就是大家学校里面最讨厌的惯例,假设:
设:A 表示学生紧张,B 表示学生答错题。要求解的是 P(B),也就是学生答错题概率
然后看一眼题目里边给的啥:
P(A) = 0.2,学生紧张的概率是 20%
P(A') = 1 - P(A) = 0.8,学生不紧张的概率是 80%
P(B|A) = 0.3,在紧张的情况下答错题的概率是 30%
P(B|A') = 0.05,在不紧张的情况下答错题的概率是 5%
套贝叶斯定理公式P(B):
P(B) = P(B|A) * P(A) + P(B|A') * P(A')
= 0.3 * 0.2 + 0.05 * 0.8
= 0.06 + 0.04
= 0.1
完事!so...最终答案为10%,上面怎么还有说4.5的???
@不二如是
我写完答案以后一看隐藏内容.......
不二哥我是不是打错了? 我的答案:10%
解题思路:蒙的,看看答案 我的答案:19%
解题思路:0.1+0.9*0.3*0.2+0.9*0.05*0.8(蒙的) 我的答案:5.4%
解题思路:0.9*0.3*0.2 我的答案:10%
解题思路:0.3*0.2+0.8*0.05=0.1 编程追风梦 发表于 2023-7-5 07:10
巧了!我就是天才高中生呀(自恋的微笑)
是一种思路,其他答案也是可以的{:10_302:} 我的答案:
解题思路: 不二如是 发表于 2023-7-5 09:16
是一种思路,其他答案也是可以的
也就是说,答案正确楼? 我的答案:
10%
解题思路:百分之九十的把握捏,所以只剩下百分之十。(懒得动脑) 本帖最后由 wangxiangtan2 于 2023-7-5 10:12 编辑
我的答案:50%
解题思路:薛定谔的猫。
页:
[1]
2