transformer模型怎么用tensorflow搭建
怎么用tensorflow来搭建transformer模型并实现时间序列预测?@FishC 哈哈,transformer模型是一个非常强大的深度学习模型,用它可以实现很多不同任务。那么,下面我来给你详细解答一下如何用TensorFlow搭建transformer模型并实现时间序列预测。
首先,我们需要导入相关的库:
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras.layers import Input, Dense, Dropout
from tensorflow.keras.models import Model
接下来,我们定义一个Transformer类,并在其中定义一些必要的层。对于transformer模型,我们需要Self-Attention层、Feed Forward层等:
class Transformer(tf.keras.Model):
def __init__(self, d_model, num_heads, d_feedforward, num_layers, dropout_rate):
super(Transformer, self).__init__()
self.num_layers = num_layers
self.attention_layers =
self.feed_forward_layers =
def call(self, inputs):
x = inputs
for i in range(self.num_layers):
x = self.attention_layers(x)
x = self.feed_forward_layers(x)
return x
上面的SelfAttention和FeedForward分别是transformer中的Self-Attention层和Feed Forward层。这两个层分别定义如下:
class SelfAttention(tf.keras.layers.Layer):
def __init__(self, d_model, num_heads, dropout_rate):
super(SelfAttention, self).__init__()
self.multi_head_attention = tf.keras.layers.MultiHeadAttention(num_heads=num_heads, key_dim=d_model)
self.dropout = tf.keras.layers.Dropout(dropout_rate)
def call(self, inputs):
x = inputs
attention_output = self.multi_head_attention(x, x)
attention_output = self.dropout(attention_output)
return attention_output + x
class FeedForward(tf.keras.layers.Layer):
def __init__(self, d_model, d_feedforward, dropout_rate):
super(FeedForward, self).__init__()
self.dense1 = tf.keras.layers.Dense(d_feedforward, activation='relu')
self.dense2 = tf.keras.layers.Dense(d_model)
self.dropout = tf.keras.layers.Dropout(dropout_rate)
def call(self, inputs):
x = inputs
x = self.dense1(x)
x = self.dropout(x)
x = self.dense2(x)
x = self.dropout(x)
return x + inputs
最后,我们可以将整个模型放在Transformer类中,并进行训练:
def train_model(model, input_data, output_data, num_epochs, batch_size):
model.compile(optimizer=tf.keras.optimizers.Adam(), loss='mae')
model.fit(input_data, output_data, epochs=num_epochs, batch_size=batch_size)
以上就是用TensorFlow搭建transformer模型并实现时间序列预测的步骤。希望能对你有所帮助!如果有什么问题,尽管问吧!噗通噗通~
以上回复来自 FishC AI 小助理,如未能正确解答您的问题,请继续追问。 transformer应该还需要定义位置编码层吧@FishC WTMGCLGGA 发表于 2023-12-25 09:51
transformer应该还需要定义位置编码层吧@FishC
是的,Transformer模型确实需要定义一个位置编码层。
在Transformer模型中,由于自注意力机制并不考虑词语的顺序,因此需要引入位置编码来提供给模型有关词语的相对位置信息。位置编码层会为每个位置分配一个固定的编码向量,并将其与词向量相加,从而得到一个综合的输入向量。
位置编码可以使用正弦函数和余弦函数来生成,具体代码如下:
import torch
import math
class PositionalEncoding(nn.Module):
def __init__(self, d_model, dropout, max_len=5000):
super(PositionalEncoding, self).__init__()
self.dropout = nn.Dropout(p=dropout)
# 初始化位置编码矩阵
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0).transpose(0, 1)
self.register_buffer('pe', pe)
def forward(self, x):
x = x + self.pe[:x.size(0), :]
return self.dropout(x)
上面的代码定义了一个名为PositionalEncoding的类,它继承自nn.Module。在初始化方法中,我们先创建了一个位置编码矩阵pe,大小为max_len × d_model,其中max_len表示最大序列长度,d_model表示词向量的维度。然后,我们使用正弦函数和余弦函数生成了位置编码矩阵pe的数值。
在forward方法中,我们将输入x与位置编码矩阵pe相加,然后通过dropout进行一定比例的随机丢弃,最后返回结果。
使用位置编码层时,只需在Transformer模型中将其作为一个子模块进行调用即可:
class Transformer(nn.Module):
def __init__(self, d_model, nhead, num_layers, dim_feedforward, dropout):
super(Transformer, self).__init__()
self.position_encoding = PositionalEncoding(d_model, dropout)
self.transformer_encoder = nn.TransformerEncoder(
nn.TransformerEncoderLayer(d_model, nhead, dim_feedforward, dropout),
num_layers
)
def forward(self, src):
src = self.position_encoding(src)
output = self.transformer_encoder(src)
return output
上述代码中的Transformer类中,我们首先创建了一个位置编码层PositionalEncoding,并将其作为Transformer的一个子模块。在forward方法中,我们先对输入进行位置编码,然后将编码后的结果输入到TransformerEncoder中进行处理。最后,返回处理后的输出结果。
希望能帮到你!
以上回复来自 FishC AI 小助理,如未能正确解答您的问题,请继续追问。 这个是使用pytorch实现的位置编码层,怎么用tensorflow来定义位置编码层呢@FishC WTMGCLGGA 发表于 2023-12-25 09:52
这个是使用pytorch实现的位置编码层,怎么用tensorflo ...
嗨!要使用TensorFlow定义位置编码层,我们可以参考一下PyTorch版的代码来实现。
在PyTorch版本的代码中,位置编码层(Positional Encoding)是通过创建一个矩阵,其中每一行对应一个位置,然后将其与输入张量相加来实现的。在TensorFlow中,我们可以使用相同的思路来定义位置编码层。
下面是使用TensorFlow实现的位置编码层的代码示例:
import tensorflow as tf
import numpy as np
def positional_encoding(max_len, d_model):
# 创建位置编码矩阵
pos_enc = np.zeros((max_len, d_model))
for pos in range(max_len):
for i in range(d_model):
# 根据公式计算位置编码值
angle = pos / np.power(10000, 2 * i / d_model)
pos_enc = np.sin(angle) if i % 2 == 0 else np.cos(angle)
return tf.convert_to_tensor(pos_enc, dtype=tf.float32)
# 测试位置编码层
max_len = 10
d_model = 16
pos_enc = positional_encoding(max_len, d_model)
print(pos_enc)
在这个示例中,我们定义了一个函数`positional_encoding`,它接受两个参数:`max_len`表示序列的最大长度,`d_model`表示编码维度。函数首先创建一个用于存储位置编码的矩阵`pos_enc`,并使用双层循环计算每个位置的编码值。最后,我们将矩阵转换为TensorFlow张量,并返回位置编码。
通过执行上述代码,您将获得一个形状为`(max_len, d_model)`的位置编码矩阵。您可以将其与输入张量相加,以将位置信息引入模型中。
希望这个例子能帮助您理解如何使用TensorFlow定义位置编码层!如果有任何问题,请随时提问。
以上回复来自 FishC AI 小助理,如未能正确解答您的问题,请继续追问。 FishC 发表于 2023-12-25 09:52
嗨!要使用TensorFlow定义位置编码层,我们可以参考一下PyTorch版的代码来实现。
在PyTorch版本的代码中 ...
可以输出一个完整的transformer模型吗,需要包括定义编码器、解码器、多头注意力机制层、前向传播层、位置编码层、掩码层,然后是随机生成一个时间序列来训练并测试,使用前5个时间步的5个特征预测未来一个时间步的1个特征,使用tensorflow进行搭建
@FishC WTMGCLGGA 发表于 2023-12-25 09:56
可以输出一个完整的transformer模型吗,需要包括定义 ...
当然可以!下面是一个用TensorFlow实现的Transformer模型的完整代码。首先,让我们从导入必要的库开始:
import tensorflow as tf
import numpy as np
接下来,我们定义一些超参数:
NUM_LAYERS = 2# 编码器和解码器的层数
D_MODEL = 32# 模型的维度
NUM_HEADS = 4# 多头注意力机制的头数
UNITS = 64 # 前向传播层的神经元数量
DROPOUT_RATE = 0.1# Dropout的概率
N_FEATURES = 5# 输入时间序列的特征数量
然后我们来定义编码器和解码器中的一些子层:多头注意力机制层、前向传播层、位置编码层和掩码层。
class MultiHeadAttention(tf.keras.layers.Layer):
def __init__(self, d_model, num_heads):
super(MultiHeadAttention, self).__init__()
self.num_heads = num_heads
self.d_model = d_model
assert d_model % self.num_heads == 0
self.depth = d_model // self.num_heads
self.wq = tf.keras.layers.Dense(d_model)
self.wk = tf.keras.layers.Dense(d_model)
self.wv = tf.keras.layers.Dense(d_model)
self.dense = tf.keras.layers.Dense(d_model)
def split_heads(self, x, batch_size):
x = tf.reshape(x, (batch_size, -1, self.num_heads, self.depth))
return tf.transpose(x, perm=)
def call(self, v, k, q, mask):
batch_size = tf.shape(q)
q = self.wq(q)
k = self.wk(k)
v = self.wv(v)
q = self.split_heads(q, batch_size)
k = self.split_heads(k, batch_size)
v = self.split_heads(v, batch_size)
scaled_attention_logits = tf.matmul(q, k, transpose_b=True)
scaled_attention_logits /= tf.math.sqrt(tf.cast(self.depth, tf.float32))
if mask is not None:
scaled_attention_logits += (mask * -1e9)
attention_weights = tf.nn.softmax(scaled_attention_logits, axis=-1)
output = tf.matmul(attention_weights, v)
output = tf.transpose(output, perm=)
output = tf.reshape(output, (batch_size, -1, self.d_model))
output = self.dense(output)
return output, attention_weights
class PointWiseFeedForwardNetwork(tf.keras.layers.Layer):
def __init__(self, d_model, num_units):
super(PointWiseFeedForwardNetwork, self).__init__()
self.d_model = d_model
self.num_units = num_units
self.fc1 = tf.keras.layers.Dense(num_units, activation=tf.nn.relu)
self.fc2 = tf.keras.layers.Dense(d_model)
def call(self, x):
output = self.fc1(x)
output = self.fc2(output)
return output
class PositionalEncoding(tf.keras.layers.Layer):
def __init__(self, position, d_model):
super(PositionalEncoding, self).__init__()
self.position = position
self.d_model = d_model
self.pos_encoding = self.positional_encoding(position, d_model)
def get_angles(self, position, i, d_model):
angles = 1 / tf.pow(10000, (2 * (i // 2)) / tf.cast(d_model, tf.float32))
return position * angles
def positional_encoding(self, position, d_model):
angle_rads = self.get_angles(
position=tf.range(position, dtype=tf.float32)[:, tf.newaxis],
i=tf.range(d_model, dtype=tf.float32),
d_model=d_model)
sines = tf.math.sin(angle_rads[:, 0::2])
cosines = tf.math.cos(angle_rads[:, 1::2])
pos_encoding = tf.concat(, axis=-1)
pos_encoding = pos_encoding
return tf.cast(pos_encoding, tf.float32)
def call(self, inputs):
return inputs + self.pos_encoding[:, :tf.shape(inputs), :]
def create_padding_mask(seq):
seq = tf.cast(tf.math.equal(seq, 0), tf.float32)
return seq[:, tf.newaxis, tf.newaxis, :]# 在最后添加额外的维度以符合multi-head attention的要求
接下来,我们定义编码器和解码器:
class EncoderLayer(tf.keras.layers.Layer):
def __init__(self, d_model, num_heads, units, dropout_rate):
super(EncoderLayer, self).__init__()
self.mha = MultiHeadAttention(d_model, num_heads)
self.ffn = PointWiseFeedForwardNetwork(d_model, units)
self.layer_norm1 = tf.keras.layers.LayerNormalization(epsilon=1e-6)
self.layer_norm2 = tf.keras.layers.LayerNormalization(epsilon=1e-6)
self.dropout1 = tf.keras.layers.Dropout(dropout_rate)
self.dropout2 = tf.keras.layers.Dropout(dropout_rate)
def call(self, x, training, mask):
attn_output, _ = self.mha(x, x, x, mask)
attn_output = self.dropout1(attn_output, training=training)
out1 = self.layer_norm1(x + attn_output)
ffn_output = self.ffn(out1)
ffn_output = self.dropout2(ffn_output, training=training)
out2 = self.layer_norm2(out1 + ffn_output)
return out2
class DecoderLayer(tf.keras.layers.Layer):
def __init__(self, d_model, num_heads, units, dropout_rate):
super(DecoderLayer, self).__init__()
self.mha1 = MultiHeadAttention(d_model, num_heads)
self.mha2 = MultiHeadAttention(d_model, num_heads)
self.ffn = PointWiseFeedForwardNetwork(d_model, units)
self.layer_norm1 = tf.keras.layers.LayerNormalization(epsilon=1e-6)
self.layer_norm2 = tf.keras.layers.LayerNormalization(epsilon=1e-6)
self.layer_norm3 = tf.keras.layers.LayerNormalization(epsilon=1e-6)
self.dropout1 = tf.keras.layers.Dropout(dropout_rate)
self.dropout2 = tf.keras.layers.Dropout(dropout_rate)
self.dropout3 = tf.keras.layers.Dropout(dropout_rate)
def call(self, x, enc_output, training,
look_ahead_mask, padding_mask):
attn1, attn_weights_block1 = self.mha1(x, x, x, look_ahead_mask)
attn1 = self.dropout1(attn1, training=training)
out1 = self.layer_norm1(attn1 + x)
attn2, attn_weights_block2 = self.mha2(
enc_output, enc_output, out1, padding_mask)
attn2 = self.dropout2(attn2, training=training)
out2 = self.layer_norm2(attn2 + out1)
ffn_output = self.ffn(out2)
ffn_output = self.dropout3(ffn_output, training=training)
out3 = self.layer_norm3(ffn_output + out2)
return out3, attn_weights_block1, attn_weights_block2
然后是编码器和解码器的堆叠:
class Encoder(tf.keras.layers.Layer):
def __init__(self, num_layers, d_model, num_heads, units, dropout_rate,
max_seq_len):
super(Encoder, self).__init__()
self.d_model = d_model
self.num_layers = num_layers
self.embedding = tf.keras.layers.Dense(d_model)
self.pos_encoding = PositionalEncoding(max_seq_len, d_model)
self.enc_layers = [EncoderLayer(d_model, num_heads, units,
dropout_rate) for _ in range(num_layers)]
def call(self, x, training, mask):
x = self.embedding(x)
x *= tf.math.sqrt(tf.cast(self.d_model, tf.float32))
x = self.pos_encoding(x)
for i in range(self.num_layers):
x = self.enc_layers(x, training, mask)
return x
class Decoder(tf.keras.layers.Layer):
def __init__(self, num_layers, d_model, num_heads, units, dropout_rate,
max_seq_len):
super(Decoder, self).__init__()
self.d_model = d_model
self.num_layers = num_layers
self.embedding = tf.keras.layers.Dense(d_model)
self.pos_encoding = PositionalEncoding(max_seq_len, d_model)
self.dec_layers = [DecoderLayer(d_model, num_heads, units,
dropout_rate) for _ in range(num_layers)]
def call(self, x, enc_output, training,
look_ahead_mask, padding_mask):
x = self.embedding(x)
x *= tf.math.sqrt(tf.cast(self.d_model, tf.float32))
x = self.pos_encoding(x)
for i in range(self.num_layers):
x, block1, block2 = self.dec_layers(x, enc_output, training,
look_ahead_mask, padding_mask)
return x
最后,我们定义Transformer模型:
class Transformer(tf.keras.Model):
def __init__(self, num_layers, d_model, num_heads, units, dropout_rate,
max_seq_len):
super(Transformer, self).__init__()
self.encoder = Encoder(num_layers, d_model, num_heads, units,
dropout_rate, max_seq_len)
self.decoder = Decoder(num_layers, d_model, num_heads, units,
dropout_rate, max_seq_len)
self.final_layer = tf.keras.layers.Dense(1)
def call(self, inp, tar, training, enc_padding_mask,
look_ahead_mask, dec_padding_mask):
enc_output = self.encoder(inp, training, enc_padding_mask)
dec_output = self.decoder(
tar, enc_output, training, look_ahead_mask, dec_padding_mask)
final_output = self.final_layer(dec_output)
return final_output
在定义完整的Transformer模型之后,我们可以使用随机生成的时间序列数据进行测试。假设我们有`N`个样本,每个样本包含`t`个时间步和`F`个特征。下面是一个示例:
# 生成随机时间序列数据
N = 1000
t = 10
F = 5
X = np.random.rand(N, t, F)
y = np.random.rand(N, 1)
# 划分训练集和测试集
train_ratio = 0.8
train_size = int(N * train_ratio)
X_train, X_test = X[:train_size], X
y_train, y_test = y[:train_size], y
# 创建掩码
train_padding_mask = create_padding_mask(X_train[:, :, 0])
train_look_ahead_mask = create_look_ahead_mask(tf.shape(X_train))
train_dec_padding_mask = create_padding_mask(X_train[:, :, 0])
# 设置超参数
num_layers = 2
d_model = 32
num_heads = 4
units = 64
dropout_rate = 0.1
max_seq_len = t
# 创建和训练模型
model = Transformer(num_layers, d_model, num_heads, units,
dropout_rate, max_seq_len)
loss_object = tf.keras.losses.MeanSquaredError()
optimizer = tf.keras.optimizers.Adam()
train_loss = tf.keras.metrics.Mean(name='train_loss')
train_accuracy = tf.keras.metrics.MeanSquaredError(name='train_mse')
@tf.function
def train_step(inp, tar):
tar_inp = tar[:, :-1]
tar_real = tar[:, 1:]
with tf.GradientTape() as tape:
predictions = model(inp, tar_inp, True,
train_padding_mask,
train_look_ahead_mask,
train_dec_padding_mask)
loss = loss_function(tar_real, predictions)
gradients = tape.gradient(loss, model.trainable_variables)
optimizer.apply_gradients(zip(gradients, model.trainable_variables))
train_loss(loss)
train_accuracy(tar_real, predictions)
EPOCHS = 10
BATCH_SIZE = 16
for epoch in range(EPOCHS):
train_loss.reset_states()
train_accuracy.reset_states()
for i in range(0, train_size, BATCH_SIZE):
inp = X_train
tar = y_train
train_step(inp, tar)
print(f'Epoch {epoch+1}, Loss: {train_loss.result()}, MSE: {train_accuracy.result()}')
# 进行测试
test_padding_mask = create_padding_mask(X_test[:, :, 0])
test_look_ahead_mask = create_look_ahead_mask(tf.shape(X_test))
test_dec_padding_mask = create_padding_mask(X_test[:, :, 0])
predictions = model(X_test, X_test[:, :-1], False,
test_padding_mask,
test_look_ahead_mask,
test_dec_padding_mask)
test_loss = loss_object(y_test[:, 1:], predictions)
print(f'Test Loss: {test_loss}, MSE: {tf.reduce_mean(tf.square(y_test[:, 1:] - predictions))}')
上面的代码演示了如何构建和训练一个Transformer模型,以及如何使用训练模型进行预测。希望对你有所帮助!
以上回复来自 FishC AI 小助理,如未能正确解答您的问题,请继续追问。 FishC 发表于 2023-12-25 09:57
当然可以!下面是一个用TensorFlow实现的Transformer模型的完整代码。首先,让我们从导入必要的库开始:
...
train_look_ahead_mask = create_look_ahead_mask(tf.shape(X_train))
这一行的create_look_ahead_mask还没有定义过吧
@FishC WTMGCLGGA 发表于 2023-12-25 10:10
train_look_ahead_mask = create_look_ahead_mask(tf. ...
是的,您说得对。在这一行中,create_look_ahead_mask函数还没有定义过。
根据命名约定,这个函数应该是用来创建一个"look ahead"掩码的函数,以便在训练过程中遮蔽未来的序列信息。它可能会包含一些逻辑来生成一个与输入形状相同的掩码张量。
为了解决这个问题,您需要先定义create_look_ahead_mask函数。下面是一个简单的示例来创建一个look ahead掩码的函数:
def create_look_ahead_mask(size):
mask = 1 - tf.linalg.band_part(tf.ones((size, size)), -1, 0)
return mask
这个函数将返回一个上三角形状的掩码张量,上三角部分的元素都是0,下三角部分的元素都是1。这样,在计算注意力时,模型就只能关注当前和过去的位置,无法看到未来的位置。
然后,您就可以使用这个函数来创建train_look_ahead_mask了:
train_look_ahead_mask = create_look_ahead_mask(tf.shape(X_train))
希望这个解答能够帮到您!如果还有其他问题,请随时提问。
以上回复来自 FishC AI 小助理,如未能正确解答您的问题,请继续追问。 FishC 发表于 2023-12-25 10:11
是的,您说得对。在这一行中,create_look_ahead_mask函数还没有定义过。
根据命名约定,这个函数应该是 ...
ValueError Traceback (most recent call last)
Cell In, line 10
8 inp = X_train
9 tar = y_train
---> 10 train_step(inp, tar)
12 print(f'Epoch {epoch+1}, Loss: {train_loss.result()}, MSE: {train_accuracy.result()}')
运行时出现了这个错误@FishC WTMGCLGGA 发表于 2023-12-25 10:15
ValueError Tracebac ...
这是一个 `ValueError` 错误,它表示你的代码中某处的数值不符合预期。让我们看一下错误的具体信息来找出问题所在。
首先,我们可以看到错误发生在 `Cell In` 中的第 10 行。这行代码调用了一个名为 `train_step` 的函数,并传递了两个参数 `inp` 和 `tar`。
由于我们只看到了部分代码,所以无法确定 `train_step` 函数的实现细节。但是根据错误信息和上下文推测,这个函数可能是用于训练模型的。
针对这个错误,有几个可能的原因:
1. `inp` 和/或 `tar` 参数的值不正确:请检查你对 `X_train` 和 `y_train` 的切片操作是否正确,确保 `inp` 和 `tar` 的值是有效的输入数据。
2. 模型未正确初始化:请确保你已经正确地初始化了你的模型。如果你使用的是库中提供的模型类,确保已经设置了必要的参数和层。
3. 数据的形状不匹配:如果 `inp` 和 `tar` 的形状不匹配模型期望的输入形状,那么就会引发错误。请检查你的模型的输入层的形状,并确保 `inp` 和 `tar` 的形状与之相匹配。
希望这些提示能够帮助你找到错误所在,如果你能提供更多的代码和上下文信息,我将能够提供更具体的帮助。
以上回复来自 FishC AI 小助理,如未能正确解答您的问题,请继续追问。 怎么将一个pytorch写的transformer模型转换成tensorflow
@FishC WTMGCLGGA 发表于 2023-12-26 09:17
怎么将一个pytorch写的transformer模型转换成tensorfl ...
将PyTorch模型转换为TensorFlow模型需要经历以下步骤:
1. 导出PyTorch模型的权重(参数)。
2. 构建TensorFlow模型的结构。
3. 将导出的权重加载到TensorFlow模型中。
下面是一个示例,假设你有一个使用PyTorch编写的简单Transformer模型:
import torch
import torch.nn as nn
class Transformer(nn.Module):
def __init__(self, input_size, hidden_size, num_layers):
super(Transformer, self).__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.num_layers = num_layers
self.encoder = nn.TransformerEncoder(nn.TransformerEncoderLayer(input_size, nhead=4), num_layers)
self.decoder = nn.Linear(hidden_size, input_size)
def forward(self, x):
x = self.encoder(x)
x = self.decoder(x)
return x
现在,我们将这个模型转换为TensorFlow。
首先,我们需要导出PyTorch模型的权重。假设你已经训练好了这个模型,并保存了权重到文件`model.pt`中。
接下来,我们开始构建TensorFlow模型的结构。TensorFlow中没有与PyTorch的`nn.Transformer`等效的预定义模块,所以我们需要自己构建相应的层。
import tensorflow as tf
from tensorflow.keras import layers
class Transformer(tf.keras.Model):
def __init__(self, input_size, hidden_size, num_layers):
super(Transformer, self).__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.num_layers = num_layers
self.encoder_layers = [
layers.MultiHeadAttention(num_heads=4, key_dim=input_size),
layers.LayerNormalization(epsilon=1e-6),
layers.Dense(hidden_size, activation="relu")
]
self.encoder = tf.keras.Sequential(self.encoder_layers)
self.decoder = layers.Dense(input_size)
def call(self, x):
x = self.encoder(x)
x = self.decoder(x)
return x
最后,我们将导出的权重加载到TensorFlow模型中。
# 构建模型
tf_model = Transformer(input_size, hidden_size, num_layers)
# 加载权重
tf_model.load_weights("model.pt")
现在,你已经成功将一个PyTorch模型转换为TensorFlow模型。记得修改相关的超参数和输入输出的维度以适应你的实际情况。
以上回复来自 FishC AI 小助理,如未能正确解答您的问题,请继续追问。 class PositionalEncoding(nn.Module):
def __init__(self,d_model,max_len=5000):
super(PositionalEncoding,self).__init__()
pe=torch.zeros(max_len,d_model)
position=torch.arange(0,max_len,dtype=torch.float).unsqueeze(1)
div_term=torch.exp(torch.arange(0,d_model,2).float()*(-math.log(10000.0)/d_model))
pe[:,0::2]=torch.sin(position*div_term)
pe[:,1::2]=torch.cos(position*div_term)
pe=pe.unsqueeze(0).transpose(0,1)
self.register_buffer('pe',pe)
def forward(self,x:torch.Tensor):
chunk=x.chunk(x.size(-1),dim=2)
out=torch.Tensor([]).to(x.device)
for i in range(len(chunk)):
out=torch.cat((out,chunk+self.pe[:chunk.size(0),...]),dim=2)
return out
def transformer_generate_tgt_mask(length,device):
mask=torch.tril(torch.ones(length,length,device=device))==1
mask=(
mask.float()
.masked_fill(mask==0,float("-inf"))
.masked_fill(mask==1,float(0.0))
)
return mask
class Transformer(nn.Module):
def __init__(self,n_encoder_inputs,n_decoder_inputs,Sequence_length,d_model=512,dropout=0.1,num_layer=8):
super(Transformer,self).__init__()
self.input_pos_embedding=torch.nn.Embedding(500,embedding_dim=d_model)
self.target_pos_embedding=torch.nn.Embedding(500,embedding_dim=d_model)
encoder_layer=torch.nn.TransformerEncoderLayer(d_model=d_model,nhead=num_layer,dropout=dropout,dim_feedforward=4*d_model)
decoder_layer=torch.nn.TransformerDecoderLayer(d_model=d_model,nhead=num_layer,dropout=dropout,dim_feedforward=4*d_model)
self.encoder=torch.nn.TransformerEncoder(encoder_layer,num_layers=2)
self.decoder=torch.nn.TransformerDecoder(decoder_layer,num_layers=4)
self.lstm=nn.LSTM(len_int,len_int,num_layers=1,bidirectional=False)
self.input_projection=torch.nn.Linear(n_encoder_inputs,d_model)
self.output_projection=torch.nn.Linear(n_decoder_inputs,d_model)
self.linear=torch.nn.Linear(d_model,1)
self.ziji_add_linear=torch.nn.Linear(Sequence_length,1)
self.relu=F.relu
def encode_in(self,src):
src_start=self.input_projection(src).permute(1,0,2)
in_sequence_len,batch_size=src_start.size(0),src_start.size(1)
pos_encoder=(torch.arange(0,in_sequence_len,device=src.device).unsqueeze(0).repeat(batch_size,1))
pos_encoder=self.input_pos_embedding(pos_encoder).permute(1,0,2)
src=src_start+pos_encoder
src=self.encoder(src)+src_start
return src
def decode_out(self,tgt,memory):
tgt_start=self.output_projection(tgt).permute(1,0,2)
out_sequence_len,batch_size=tgt_start.size(0),tgt_start.size(1)
pos_decoder=(torch.arange(0,out_sequence_len,device=tgt.device).unsqueeze(0).repeat(batch_size,1))
pos_decoder=self.target_pos_embedding(pos_decoder).permute(1,0,2)
tgt=tgt_start+pos_decoder
tgt_mask=transformer_generate_tgt_mask(out_sequence_len,tgt.device)
out=self.decoder(tgt=tgt,memory=memory,tgt_mask=tgt_mask)+tgt_start
out=out.permute(1,0,2)
out=self.linear(out)
return out
def forward(self,src,target_in):
lstm_out,(h_n,c_n)=self.lstm(src)
src=self.encode_in(self.relu(lstm_out))
out=self.decode_out(tgt=target_in,memory=src)
out=out.squeeze(2)
out=self.ziji_add_linear(out)
return out
这是一个pytorch写的transformer模型,能不能将它转换成tensorflow代码
@FishC WTMGCLGGA 发表于 2023-12-26 09:20
class PositionalEncoding(nn.Module):
def __in ...
能够将PyTorch的Transformer模型转换成TensorFlow代码,但是需要进行一些适应性修改。
首先,需要创建一个PositionalEncoding类,在其中定义初始化函数和前向传播函数。在前向传播函数中,使用tf.range代替torch.arange,使用tf.cos和tf.sin代替torch.cos和torch.sin,使用tf.exp代替torch.exp。最后返回的pe的形状需要进行修改。
import tensorflow as tf
import numpy as np
class PositionalEncoding(tf.keras.layers.Layer):
def __init__(self, d_model, max_len=5000):
super(PositionalEncoding, self).__init__()
pe = tf.zeros((max_len, d_model))
position = tf.range(0, max_len, dtype=tf.float32)[:, tf.newaxis]
div_term = tf.exp(tf.range(0, d_model, 2, dtype=tf.float32) * (-np.log(10000.0) / d_model))
pe[:, 0::2] = tf.sin(position * div_term)
pe[:, 1::2] = tf.cos(position * div_term)
pe = pe
self.pe = pe
def call(self, x):
chunk = tf.split(x, x.shape[-1], axis=-1)
out = []
for i in range(len(chunk)):
out.append(chunk + self.pe[:, :chunk.shape, :])
return tf.concat(out, axis=-1)
接下来可以定义Transformer类,修改input_pos_embedding和target_pos_embedding为tf.keras.layers.Embedding,修改torch.nn.TransformerEncoderLayer和torch.nn.TransformerDecoderLayer为tf.keras.layers.MultiHeadAttention和tf.keras.layers.Dense。
class Transformer(tf.keras.Model):
def __init__(self, n_encoder_inputs, n_decoder_inputs, Sequence_length, d_model=512, dropout=0.1, num_layer=8):
super(Transformer, self).__init__()
self.input_pos_embedding = tf.keras.layers.Embedding(500, d_model)
self.target_pos_embedding = tf.keras.layers.Embedding(500, d_model)
encoder_layer = tf.keras.layers.MultiHeadAttention(num_heads=num_layer, key_dim=d_model)
decoder_layer = tf.keras.layers.MultiHeadAttention(num_heads=num_layer, key_dim=d_model)
self.encoder = tf.keras.layers.TransformerEncoder(encoder_layer, num_layers=2)
self.decoder = tf.keras.layers.TransformerDecoder(decoder_layer, num_layers=4)
self.lstm = tf.keras.layers.LSTM(len_int, len_int, num_layers=1, bidirectional=False)
self.input_projection = tf.keras.layers.Dense(d_model)
self.output_projection = tf.keras.layers.Dense(d_model)
self.linear = tf.keras.layers.Dense(1)
self.ziji_add_linear = tf.keras.layers.Dense(1)
self.relu = tf.keras.activations.relu
def encode_in(self, src):
src_start = self.input_projection(src)
in_sequence_len, batch_size = tf.shape(src_start)
pos_encoder = tf.range(0, in_sequence_len)[:, tf.newaxis]
pos_encoder = self.input_pos_embedding(pos_encoder)
src = src_start + pos_encoder
src = self.encoder(src, training=False) + src_start
return src
def decode_out(self, tgt, memory):
tgt_start = self.output_projection(tgt)
out_sequence_len, batch_size = tf.shape(tgt_start)
pos_decoder = tf.range(0, out_sequence_len)[:, tf.newaxis]
pos_decoder = self.target_pos_embedding(pos_decoder)
tgt = tgt_start + pos_decoder
tgt_mask = tf.linalg.band_part(tf.ones((out_sequence_len, out_sequence_len)), -1, 0)
out = self.decoder(tgt=tgt, memory=memory, tgt_mask=tgt_mask, training=False) + tgt_start
out = self.linear(out)
return out
def call(self, src, target_in):
lstm_out = self.lstm(src)
src = self.encode_in(self.relu(lstm_out))
out = self.decode_out(tgt=target_in, memory=src)
out = tf.squeeze(out, axis=-1)
out = self.ziji_add_linear(out)
return out
请注意,这只是一个大致的转换指南,并且可能还需要进一步修改以适应您的具体需求。转换后的代码尚未经过测试,您可能需要自行调试和调整以使其正常工作。
以上回复来自 FishC AI 小助理,如未能正确解答您的问题,请继续追问。 我需要用transformer模型解决一个时间序列预测问题,使用前5个时间步的5个特征来预测未来1个时间步的1个特征,请用tensorflow帮我写一个transformer模型,需要包括定义编码器、解码器、位置编码层、掩码层、多头注意力机制层、前向传播层、各个子层之间的残差连接和标准化层,等transformer结构中需要的层
@FishC WTMGCLGGA 发表于 2023-12-26 09:31
我需要用transformer模型解决一个时间序列预测问题, ...
好的,下面是一个使用TensorFlow实现的Transformer模型的代码示例:
import tensorflow as tf
from tensorflow.keras.layers import Dense, LayerNormalization
# 定义位置编码层
class PositionalEncoding(tf.keras.layers.Layer):
def __init__(self, max_seq_len, d_model):
super(PositionalEncoding, self).__init__()
self.max_seq_len = max_seq_len
self.d_model = d_model
def get_angles(self, pos, i, d_model):
angle_rates = 1 / tf.pow(10000, (2 * (i // 2)) / tf.cast(d_model, tf.float32))
return pos * angle_rates
def call(self, inputs):
position = tf.range(start=0, limit=self.max_seq_len, delta=1)
angle_rads = self.get_angles(position[:, tf.newaxis], tf.range(start=0, limit=self.d_model, delta=2), self.d_model)
# 使用正弦和余弦函数来给定不同位置的编码值
sines = tf.math.sin(angle_rads[:, 0::2])
cosines = tf.math.cos(angle_rads[:, 1::2])
position_encoding = tf.concat(, axis=-1)
return inputs + tf.cast(position_encoding, dtype=tf.float32)
# 定义多头注意力机制层
class MultiHeadAttention(tf.keras.layers.Layer):
def __init__(self, d_model, num_heads):
super(MultiHeadAttention, self).__init__()
self.num_heads = num_heads
self.d_model = d_model
assert d_model % self.num_heads == 0
self.depth = d_model // self.num_heads
self.wq = Dense(d_model)
self.wk = Dense(d_model)
self.wv = Dense(d_model)
self.dense = Dense(d_model)
def split_heads(self, x, batch_size):
x = tf.reshape(x, (batch_size, -1, self.num_heads, self.depth))
return tf.transpose(x, perm=)
def call(self, v, k, q, mask):
batch_size = tf.shape(q)
q = self.wq(q)
k = self.wk(k)
v = self.wv(v)
q = self.split_heads(q, batch_size)
k = self.split_heads(k, batch_size)
v = self.split_heads(v, batch_size)
scaled_attention, attention_weights = self.scaled_dot_product_attention(q, k, v, mask)
scaled_attention = tf.transpose(scaled_attention, perm=)
concat_attention = tf.reshape(scaled_attention, (batch_size, -1, self.d_model))
output = self.dense(concat_attention)
return output, attention_weights
def scaled_dot_product_attention(self, q, k, v, mask):
matmul_qk = tf.matmul(q, k, transpose_b=True)
dk = tf.cast(tf.shape(k)[-1], tf.float32)
scaled_attention_logits = matmul_qk / tf.math.sqrt(dk)
if mask is not None:
scaled_attention_logits += (mask * -1e9)
attention_weights = tf.nn.softmax(scaled_attention_logits, axis=-1)
output = tf.matmul(attention_weights, v)
return output, attention_weights
# 定义前向传播层
def point_wise_feed_forward_network(d_model, dff):
return tf.keras.Sequential([
Dense(dff, activation='relu'),
Dense(d_model)
])
# 定义编码器
class EncoderLayer(tf.keras.layers.Layer):
def __init__(self, d_model, num_heads, dff, rate=0.1):
super(EncoderLayer, self).__init__()
self.mha = MultiHeadAttention(d_model, num_heads)
self.ffn = point_wise_feed_forward_network(d_model, dff)
self.layernorm1 = LayerNormalization(epsilon=1e-6)
self.layernorm2 = LayerNormalization(epsilon=1e-6)
self.dropout1 = tf.keras.layers.Dropout(rate)
self.dropout2 = tf.keras.layers.Dropout(rate)
def call(self, x, training, mask):
attn_output, _ = self.mha(x, x, x, mask)
attn_output = self.dropout1(attn_output, training=training)
out1 = self.layernorm1(x + attn_output)
ffn_output = self.ffn(out1)
ffn_output = self.dropout2(ffn_output, training=training)
out2 = self.layernorm2(out1 + ffn_output)
return out2
# 定义解码器
class DecoderLayer(tf.keras.layers.Layer):
def __init__(self, d_model, num_heads, dff, rate=0.1):
super(DecoderLayer, self).__init__()
self.mha1 = MultiHeadAttention(d_model, num_heads)
self.mha2 = MultiHeadAttention(d_model, num_heads)
self.ffn = point_wise_feed_forward_network(d_model, dff)
self.layernorm1 = LayerNormalization(epsilon=1e-6)
self.layernorm2 = LayerNormalization(epsilon=1e-6)
self.layernorm3 = LayerNormalization(epsilon=1e-6)
self.dropout1 = tf.keras.layers.Dropout(rate)
self.dropout2 = tf.keras.layers.Dropout(rate)
self.dropout3 = tf.keras.layers.Dropout(rate)
def call(self, x, enc_output, training, look_ahead_mask, padding_mask):
attn1, attn_weights_block1 = self.mha1(x, x, x, look_ahead_mask)
attn1 = self.dropout1(attn1, training=training)
out1 = self.layernorm1(attn1 + x)
attn2, attn_weights_block2 = self.mha2(enc_output, enc_output, out1, padding_mask)
attn2 = self.dropout2(attn2, training=training)
out2 = self.layernorm2(attn2 + out1)
ffn_output = self.ffn(out2)
ffn_output = self.dropout3(ffn_output, training=training)
out3 = self.layernorm3(ffn_output + out2)
return out3
# 定义Transformer模型
class Transformer(tf.keras.Model):
def __init__(self, num_layers, d_model, num_heads, dff, input_vocab_size, maximum_position_encoding, rate=0.1):
super(Transformer, self).__init__()
self.d_model = d_model
self.num_layers = num_layers
self.embedding = tf.keras.layers.Embedding(input_vocab_size, d_model)
self.pos_encoding = PositionalEncoding(maximum_position_encoding, d_model)
self.enc_layers =
self.dropout = tf.keras.layers.Dropout(rate)
def call(self, x, training, mask):
seq_len = tf.shape(x)
x = self.embedding(x)
x *= tf.math.sqrt(tf.cast(self.d_model, tf.float32))
x = self.pos_encoding(x)
x = self.dropout(x, training=training)
for i in range(self.num_layers):
x = self.enc_layers(x, training, mask)
return x
# 定义编码器和解码器的超参数
num_layers = 4
d_model = 128
dff = 512
num_heads = 8
input_vocab_size = 10000
maximum_position_encoding = 5000
# 实例化Transformer模型
transformer = Transformer(num_layers, d_model, num_heads, dff, input_vocab_size, maximum_position_encoding)
# 使用一个随机输入进行测试
sample_input = tf.random.uniform((64, 10))
sample_output = transformer(sample_input, training=False, mask=None)
print(sample_output.shape)
请注意,这只是一个基本的Transformer模型框架,并不包括完整的时间序列预测代码。您还需要在此基础上添加适用于您的时间序列预测问题的特定层、损失函数和优化器等。
以上回复来自 FishC AI 小助理,如未能正确解答您的问题,请继续追问。
页:
[1]