|
发表于 2023-12-25 09:57:35
|
显示全部楼层
本楼为最佳答案
当然可以!下面是一个用TensorFlow实现的Transformer模型的完整代码。首先,让我们从导入必要的库开始:
- import tensorflow as tf
- import numpy as np
复制代码
接下来,我们定义一些超参数:
- NUM_LAYERS = 2 # 编码器和解码器的层数
- D_MODEL = 32 # 模型的维度
- NUM_HEADS = 4 # 多头注意力机制的头数
- UNITS = 64 # 前向传播层的神经元数量
- DROPOUT_RATE = 0.1 # Dropout的概率
- N_FEATURES = 5 # 输入时间序列的特征数量
复制代码
然后我们来定义编码器和解码器中的一些子层:多头注意力机制层、前向传播层、位置编码层和掩码层。
- class MultiHeadAttention(tf.keras.layers.Layer):
- def __init__(self, d_model, num_heads):
- super(MultiHeadAttention, self).__init__()
- self.num_heads = num_heads
- self.d_model = d_model
-
- assert d_model % self.num_heads == 0
-
- self.depth = d_model // self.num_heads
-
- self.wq = tf.keras.layers.Dense(d_model)
- self.wk = tf.keras.layers.Dense(d_model)
- self.wv = tf.keras.layers.Dense(d_model)
-
- self.dense = tf.keras.layers.Dense(d_model)
-
- def split_heads(self, x, batch_size):
- x = tf.reshape(x, (batch_size, -1, self.num_heads, self.depth))
- return tf.transpose(x, perm=[0, 2, 1, 3])
-
- def call(self, v, k, q, mask):
- batch_size = tf.shape(q)[0]
-
- q = self.wq(q)
- k = self.wk(k)
- v = self.wv(v)
-
- q = self.split_heads(q, batch_size)
- k = self.split_heads(k, batch_size)
- v = self.split_heads(v, batch_size)
-
- scaled_attention_logits = tf.matmul(q, k, transpose_b=True)
-
- scaled_attention_logits /= tf.math.sqrt(tf.cast(self.depth, tf.float32))
-
- if mask is not None:
- scaled_attention_logits += (mask * -1e9)
-
- attention_weights = tf.nn.softmax(scaled_attention_logits, axis=-1)
-
- output = tf.matmul(attention_weights, v)
- output = tf.transpose(output, perm=[0, 2, 1, 3])
- output = tf.reshape(output, (batch_size, -1, self.d_model))
-
- output = self.dense(output)
-
- return output, attention_weights
- class PointWiseFeedForwardNetwork(tf.keras.layers.Layer):
- def __init__(self, d_model, num_units):
- super(PointWiseFeedForwardNetwork, self).__init__()
- self.d_model = d_model
- self.num_units = num_units
-
- self.fc1 = tf.keras.layers.Dense(num_units, activation=tf.nn.relu)
- self.fc2 = tf.keras.layers.Dense(d_model)
-
- def call(self, x):
- output = self.fc1(x)
- output = self.fc2(output)
- return output
-
- class PositionalEncoding(tf.keras.layers.Layer):
- def __init__(self, position, d_model):
- super(PositionalEncoding, self).__init__()
- self.position = position
- self.d_model = d_model
-
- self.pos_encoding = self.positional_encoding(position, d_model)
-
- def get_angles(self, position, i, d_model):
- angles = 1 / tf.pow(10000, (2 * (i // 2)) / tf.cast(d_model, tf.float32))
- return position * angles
-
- def positional_encoding(self, position, d_model):
- angle_rads = self.get_angles(
- position=tf.range(position, dtype=tf.float32)[:, tf.newaxis],
- i=tf.range(d_model, dtype=tf.float32)[tf.newaxis, :],
- d_model=d_model)
-
- sines = tf.math.sin(angle_rads[:, 0::2])
- cosines = tf.math.cos(angle_rads[:, 1::2])
-
- pos_encoding = tf.concat([sines, cosines], axis=-1)
- pos_encoding = pos_encoding[tf.newaxis, ...]
-
- return tf.cast(pos_encoding, tf.float32)
-
- def call(self, inputs):
- return inputs + self.pos_encoding[:, :tf.shape(inputs)[1], :]
-
- def create_padding_mask(seq):
- seq = tf.cast(tf.math.equal(seq, 0), tf.float32)
- return seq[:, tf.newaxis, tf.newaxis, :] # 在最后添加额外的维度以符合multi-head attention的要求
复制代码
接下来,我们定义编码器和解码器:
- class EncoderLayer(tf.keras.layers.Layer):
- def __init__(self, d_model, num_heads, units, dropout_rate):
- super(EncoderLayer, self).__init__()
- self.mha = MultiHeadAttention(d_model, num_heads)
- self.ffn = PointWiseFeedForwardNetwork(d_model, units)
-
- self.layer_norm1 = tf.keras.layers.LayerNormalization(epsilon=1e-6)
- self.layer_norm2 = tf.keras.layers.LayerNormalization(epsilon=1e-6)
-
- self.dropout1 = tf.keras.layers.Dropout(dropout_rate)
- self.dropout2 = tf.keras.layers.Dropout(dropout_rate)
-
- def call(self, x, training, mask):
- attn_output, _ = self.mha(x, x, x, mask)
- attn_output = self.dropout1(attn_output, training=training)
- out1 = self.layer_norm1(x + attn_output)
-
- ffn_output = self.ffn(out1)
- ffn_output = self.dropout2(ffn_output, training=training)
- out2 = self.layer_norm2(out1 + ffn_output)
-
- return out2
- class DecoderLayer(tf.keras.layers.Layer):
- def __init__(self, d_model, num_heads, units, dropout_rate):
- super(DecoderLayer, self).__init__()
- self.mha1 = MultiHeadAttention(d_model, num_heads)
- self.mha2 = MultiHeadAttention(d_model, num_heads)
-
- self.ffn = PointWiseFeedForwardNetwork(d_model, units)
-
- self.layer_norm1 = tf.keras.layers.LayerNormalization(epsilon=1e-6)
- self.layer_norm2 = tf.keras.layers.LayerNormalization(epsilon=1e-6)
- self.layer_norm3 = tf.keras.layers.LayerNormalization(epsilon=1e-6)
-
- self.dropout1 = tf.keras.layers.Dropout(dropout_rate)
- self.dropout2 = tf.keras.layers.Dropout(dropout_rate)
- self.dropout3 = tf.keras.layers.Dropout(dropout_rate)
-
- def call(self, x, enc_output, training,
- look_ahead_mask, padding_mask):
- attn1, attn_weights_block1 = self.mha1(x, x, x, look_ahead_mask)
- attn1 = self.dropout1(attn1, training=training)
- out1 = self.layer_norm1(attn1 + x)
-
- attn2, attn_weights_block2 = self.mha2(
- enc_output, enc_output, out1, padding_mask)
- attn2 = self.dropout2(attn2, training=training)
- out2 = self.layer_norm2(attn2 + out1)
-
- ffn_output = self.ffn(out2)
- ffn_output = self.dropout3(ffn_output, training=training)
- out3 = self.layer_norm3(ffn_output + out2)
-
- return out3, attn_weights_block1, attn_weights_block2
复制代码
然后是编码器和解码器的堆叠:
- class Encoder(tf.keras.layers.Layer):
- def __init__(self, num_layers, d_model, num_heads, units, dropout_rate,
- max_seq_len):
- super(Encoder, self).__init__()
- self.d_model = d_model
- self.num_layers = num_layers
-
- self.embedding = tf.keras.layers.Dense(d_model)
- self.pos_encoding = PositionalEncoding(max_seq_len, d_model)
- self.enc_layers = [EncoderLayer(d_model, num_heads, units,
- dropout_rate) for _ in range(num_layers)]
-
- def call(self, x, training, mask):
- x = self.embedding(x)
- x *= tf.math.sqrt(tf.cast(self.d_model, tf.float32))
- x = self.pos_encoding(x)
-
- for i in range(self.num_layers):
- x = self.enc_layers[i](x, training, mask)
-
- return x
- class Decoder(tf.keras.layers.Layer):
- def __init__(self, num_layers, d_model, num_heads, units, dropout_rate,
- max_seq_len):
- super(Decoder, self).__init__()
- self.d_model = d_model
- self.num_layers = num_layers
-
- self.embedding = tf.keras.layers.Dense(d_model)
- self.pos_encoding = PositionalEncoding(max_seq_len, d_model)
- self.dec_layers = [DecoderLayer(d_model, num_heads, units,
- dropout_rate) for _ in range(num_layers)]
-
- def call(self, x, enc_output, training,
- look_ahead_mask, padding_mask):
- x = self.embedding(x)
- x *= tf.math.sqrt(tf.cast(self.d_model, tf.float32))
- x = self.pos_encoding(x)
-
- for i in range(self.num_layers):
- x, block1, block2 = self.dec_layers[i](x, enc_output, training,
- look_ahead_mask, padding_mask)
-
- return x
复制代码
最后,我们定义Transformer模型:
- class Transformer(tf.keras.Model):
- def __init__(self, num_layers, d_model, num_heads, units, dropout_rate,
- max_seq_len):
- super(Transformer, self).__init__()
- self.encoder = Encoder(num_layers, d_model, num_heads, units,
- dropout_rate, max_seq_len)
- self.decoder = Decoder(num_layers, d_model, num_heads, units,
- dropout_rate, max_seq_len)
- self.final_layer = tf.keras.layers.Dense(1)
-
- def call(self, inp, tar, training, enc_padding_mask,
- look_ahead_mask, dec_padding_mask):
- enc_output = self.encoder(inp, training, enc_padding_mask)
-
- dec_output = self.decoder(
- tar, enc_output, training, look_ahead_mask, dec_padding_mask)
-
- final_output = self.final_layer(dec_output)
-
- return final_output
复制代码
在定义完整的Transformer模型之后,我们可以使用随机生成的时间序列数据进行测试。假设我们有`N`个样本,每个样本包含`t`个时间步和`F`个特征。下面是一个示例:
- # 生成随机时间序列数据
- N = 1000
- t = 10
- F = 5
- X = np.random.rand(N, t, F)
- y = np.random.rand(N, 1)
- # 划分训练集和测试集
- train_ratio = 0.8
- train_size = int(N * train_ratio)
- X_train, X_test = X[:train_size], X[train_size:]
- y_train, y_test = y[:train_size], y[train_size:]
- # 创建掩码
- train_padding_mask = create_padding_mask(X_train[:, :, 0])
- train_look_ahead_mask = create_look_ahead_mask(tf.shape(X_train)[1])
- train_dec_padding_mask = create_padding_mask(X_train[:, :, 0])
- # 设置超参数
- num_layers = 2
- d_model = 32
- num_heads = 4
- units = 64
- dropout_rate = 0.1
- max_seq_len = t
- # 创建和训练模型
- model = Transformer(num_layers, d_model, num_heads, units,
- dropout_rate, max_seq_len)
- loss_object = tf.keras.losses.MeanSquaredError()
- optimizer = tf.keras.optimizers.Adam()
- train_loss = tf.keras.metrics.Mean(name='train_loss')
- train_accuracy = tf.keras.metrics.MeanSquaredError(name='train_mse')
- @tf.function
- def train_step(inp, tar):
- tar_inp = tar[:, :-1]
- tar_real = tar[:, 1:]
-
- with tf.GradientTape() as tape:
- predictions = model(inp, tar_inp, True,
- train_padding_mask,
- train_look_ahead_mask,
- train_dec_padding_mask)
- loss = loss_function(tar_real, predictions)
-
- gradients = tape.gradient(loss, model.trainable_variables)
- optimizer.apply_gradients(zip(gradients, model.trainable_variables))
-
- train_loss(loss)
- train_accuracy(tar_real, predictions)
-
- EPOCHS = 10
- BATCH_SIZE = 16
- for epoch in range(EPOCHS):
- train_loss.reset_states()
- train_accuracy.reset_states()
-
- for i in range(0, train_size, BATCH_SIZE):
- inp = X_train[i:i+BATCH_SIZE]
- tar = y_train[i:i+BATCH_SIZE]
- train_step(inp, tar)
-
- print(f'Epoch {epoch+1}, Loss: {train_loss.result()}, MSE: {train_accuracy.result()}')
- # 进行测试
- test_padding_mask = create_padding_mask(X_test[:, :, 0])
- test_look_ahead_mask = create_look_ahead_mask(tf.shape(X_test)[1])
- test_dec_padding_mask = create_padding_mask(X_test[:, :, 0])
- predictions = model(X_test, X_test[:, :-1], False,
- test_padding_mask,
- test_look_ahead_mask,
- test_dec_padding_mask)
- test_loss = loss_object(y_test[:, 1:], predictions)
- print(f'Test Loss: {test_loss}, MSE: {tf.reduce_mean(tf.square(y_test[:, 1:] - predictions))}')
复制代码
上面的代码演示了如何构建和训练一个Transformer模型,以及如何使用训练模型进行预测。希望对你有所帮助!
以上回复来自 FishC AI 小助理,如未能正确解答您的问题,请继续追问。 |
|