|
发表于 2023-12-25 09:57:35
|
显示全部楼层
本楼为最佳答案
当然可以!下面是一个用TensorFlow实现的Transformer模型的完整代码。首先,让我们从导入必要的库开始:import tensorflow as tfimport numpy as np
接下来,我们定义一些超参数:NUM_LAYERS = 2 # 编码器和解码器的层数D_MODEL = 32 # 模型的维度NUM_HEADS = 4 # 多头注意力机制的头数UNITS = 64 # 前向传播层的神经元数量DROPOUT_RATE = 0.1 # Dropout的概率N_FEATURES = 5 # 输入时间序列的特征数量
然后我们来定义编码器和解码器中的一些子层:多头注意力机制层、前向传播层、位置编码层和掩码层。class MultiHeadAttention(tf.keras.layers.Layer): def __init__(self, d_model, num_heads): super(MultiHeadAttention, self).__init__() self.num_heads = num_heads self.d_model = d_model assert d_model % self.num_heads == 0 self.depth = d_model // self.num_heads self.wq = tf.keras.layers.Dense(d_model) self.wk = tf.keras.layers.Dense(d_model) self.wv = tf.keras.layers.Dense(d_model) self.dense = tf.keras.layers.Dense(d_model) def split_heads(self, x, batch_size): x = tf.reshape(x, (batch_size, -1, self.num_heads, self.depth)) return tf.transpose(x, perm=[0, 2, 1, 3]) def call(self, v, k, q, mask): batch_size = tf.shape(q)[0] q = self.wq(q) k = self.wk(k) v = self.wv(v) q = self.split_heads(q, batch_size) k = self.split_heads(k, batch_size) v = self.split_heads(v, batch_size) scaled_attention_logits = tf.matmul(q, k, transpose_b=True) scaled_attention_logits /= tf.math.sqrt(tf.cast(self.depth, tf.float32)) if mask is not None: scaled_attention_logits += (mask * -1e9) attention_weights = tf.nn.softmax(scaled_attention_logits, axis=-1) output = tf.matmul(attention_weights, v) output = tf.transpose(output, perm=[0, 2, 1, 3]) output = tf.reshape(output, (batch_size, -1, self.d_model)) output = self.dense(output) return output, attention_weightsclass PointWiseFeedForwardNetwork(tf.keras.layers.Layer): def __init__(self, d_model, num_units): super(PointWiseFeedForwardNetwork, self).__init__() self.d_model = d_model self.num_units = num_units self.fc1 = tf.keras.layers.Dense(num_units, activation=tf.nn.relu) self.fc2 = tf.keras.layers.Dense(d_model) def call(self, x): output = self.fc1(x) output = self.fc2(output) return output class PositionalEncoding(tf.keras.layers.Layer): def __init__(self, position, d_model): super(PositionalEncoding, self).__init__() self.position = position self.d_model = d_model self.pos_encoding = self.positional_encoding(position, d_model) def get_angles(self, position, i, d_model): angles = 1 / tf.pow(10000, (2 * (i // 2)) / tf.cast(d_model, tf.float32)) return position * angles def positional_encoding(self, position, d_model): angle_rads = self.get_angles( position=tf.range(position, dtype=tf.float32)[:, tf.newaxis], i=tf.range(d_model, dtype=tf.float32)[tf.newaxis, :], d_model=d_model) sines = tf.math.sin(angle_rads[:, 0::2]) cosines = tf.math.cos(angle_rads[:, 1::2]) pos_encoding = tf.concat([sines, cosines], axis=-1) pos_encoding = pos_encoding[tf.newaxis, ...] return tf.cast(pos_encoding, tf.float32) def call(self, inputs): return inputs + self.pos_encoding[:, :tf.shape(inputs)[1], :] def create_padding_mask(seq): seq = tf.cast(tf.math.equal(seq, 0), tf.float32) return seq[:, tf.newaxis, tf.newaxis, :] # 在最后添加额外的维度以符合multi-head attention的要求
接下来,我们定义编码器和解码器:class EncoderLayer(tf.keras.layers.Layer): def __init__(self, d_model, num_heads, units, dropout_rate): super(EncoderLayer, self).__init__() self.mha = MultiHeadAttention(d_model, num_heads) self.ffn = PointWiseFeedForwardNetwork(d_model, units) self.layer_norm1 = tf.keras.layers.LayerNormalization(epsilon=1e-6) self.layer_norm2 = tf.keras.layers.LayerNormalization(epsilon=1e-6) self.dropout1 = tf.keras.layers.Dropout(dropout_rate) self.dropout2 = tf.keras.layers.Dropout(dropout_rate) def call(self, x, training, mask): attn_output, _ = self.mha(x, x, x, mask) attn_output = self.dropout1(attn_output, training=training) out1 = self.layer_norm1(x + attn_output) ffn_output = self.ffn(out1) ffn_output = self.dropout2(ffn_output, training=training) out2 = self.layer_norm2(out1 + ffn_output) return out2class DecoderLayer(tf.keras.layers.Layer): def __init__(self, d_model, num_heads, units, dropout_rate): super(DecoderLayer, self).__init__() self.mha1 = MultiHeadAttention(d_model, num_heads) self.mha2 = MultiHeadAttention(d_model, num_heads) self.ffn = PointWiseFeedForwardNetwork(d_model, units) self.layer_norm1 = tf.keras.layers.LayerNormalization(epsilon=1e-6) self.layer_norm2 = tf.keras.layers.LayerNormalization(epsilon=1e-6) self.layer_norm3 = tf.keras.layers.LayerNormalization(epsilon=1e-6) self.dropout1 = tf.keras.layers.Dropout(dropout_rate) self.dropout2 = tf.keras.layers.Dropout(dropout_rate) self.dropout3 = tf.keras.layers.Dropout(dropout_rate) def call(self, x, enc_output, training, look_ahead_mask, padding_mask): attn1, attn_weights_block1 = self.mha1(x, x, x, look_ahead_mask) attn1 = self.dropout1(attn1, training=training) out1 = self.layer_norm1(attn1 + x) attn2, attn_weights_block2 = self.mha2( enc_output, enc_output, out1, padding_mask) attn2 = self.dropout2(attn2, training=training) out2 = self.layer_norm2(attn2 + out1) ffn_output = self.ffn(out2) ffn_output = self.dropout3(ffn_output, training=training) out3 = self.layer_norm3(ffn_output + out2) return out3, attn_weights_block1, attn_weights_block2
然后是编码器和解码器的堆叠:class Encoder(tf.keras.layers.Layer): def __init__(self, num_layers, d_model, num_heads, units, dropout_rate, max_seq_len): super(Encoder, self).__init__() self.d_model = d_model self.num_layers = num_layers self.embedding = tf.keras.layers.Dense(d_model) self.pos_encoding = PositionalEncoding(max_seq_len, d_model) self.enc_layers = [EncoderLayer(d_model, num_heads, units, dropout_rate) for _ in range(num_layers)] def call(self, x, training, mask): x = self.embedding(x) x *= tf.math.sqrt(tf.cast(self.d_model, tf.float32)) x = self.pos_encoding(x) for i in range(self.num_layers): x = self.enc_layers[i](x, training, mask) return xclass Decoder(tf.keras.layers.Layer): def __init__(self, num_layers, d_model, num_heads, units, dropout_rate, max_seq_len): super(Decoder, self).__init__() self.d_model = d_model self.num_layers = num_layers self.embedding = tf.keras.layers.Dense(d_model) self.pos_encoding = PositionalEncoding(max_seq_len, d_model) self.dec_layers = [DecoderLayer(d_model, num_heads, units, dropout_rate) for _ in range(num_layers)] def call(self, x, enc_output, training, look_ahead_mask, padding_mask): x = self.embedding(x) x *= tf.math.sqrt(tf.cast(self.d_model, tf.float32)) x = self.pos_encoding(x) for i in range(self.num_layers): x, block1, block2 = self.dec_layers[i](x, enc_output, training, look_ahead_mask, padding_mask) return x
最后,我们定义Transformer模型:class Transformer(tf.keras.Model): def __init__(self, num_layers, d_model, num_heads, units, dropout_rate, max_seq_len): super(Transformer, self).__init__() self.encoder = Encoder(num_layers, d_model, num_heads, units, dropout_rate, max_seq_len) self.decoder = Decoder(num_layers, d_model, num_heads, units, dropout_rate, max_seq_len) self.final_layer = tf.keras.layers.Dense(1) def call(self, inp, tar, training, enc_padding_mask, look_ahead_mask, dec_padding_mask): enc_output = self.encoder(inp, training, enc_padding_mask) dec_output = self.decoder( tar, enc_output, training, look_ahead_mask, dec_padding_mask) final_output = self.final_layer(dec_output) return final_output
在定义完整的Transformer模型之后,我们可以使用随机生成的时间序列数据进行测试。假设我们有`N`个样本,每个样本包含`t`个时间步和`F`个特征。下面是一个示例:# 生成随机时间序列数据N = 1000t = 10F = 5X = np.random.rand(N, t, F)y = np.random.rand(N, 1)# 划分训练集和测试集train_ratio = 0.8train_size = int(N * train_ratio)X_train, X_test = X[:train_size], X[train_size:]y_train, y_test = y[:train_size], y[train_size:]# 创建掩码train_padding_mask = create_padding_mask(X_train[:, :, 0])train_look_ahead_mask = create_look_ahead_mask(tf.shape(X_train)[1])train_dec_padding_mask = create_padding_mask(X_train[:, :, 0])# 设置超参数num_layers = 2d_model = 32num_heads = 4units = 64dropout_rate = 0.1max_seq_len = t# 创建和训练模型model = Transformer(num_layers, d_model, num_heads, units, dropout_rate, max_seq_len)loss_object = tf.keras.losses.MeanSquaredError()optimizer = tf.keras.optimizers.Adam()train_loss = tf.keras.metrics.Mean(name='train_loss')train_accuracy = tf.keras.metrics.MeanSquaredError(name='train_mse')@tf.functiondef train_step(inp, tar): tar_inp = tar[:, :-1] tar_real = tar[:, 1:] with tf.GradientTape() as tape: predictions = model(inp, tar_inp, True, train_padding_mask, train_look_ahead_mask, train_dec_padding_mask) loss = loss_function(tar_real, predictions) gradients = tape.gradient(loss, model.trainable_variables) optimizer.apply_gradients(zip(gradients, model.trainable_variables)) train_loss(loss) train_accuracy(tar_real, predictions) EPOCHS = 10BATCH_SIZE = 16for epoch in range(EPOCHS): train_loss.reset_states() train_accuracy.reset_states() for i in range(0, train_size, BATCH_SIZE): inp = X_train[i:i+BATCH_SIZE] tar = y_train[i:i+BATCH_SIZE] train_step(inp, tar) print(f'Epoch {epoch+1}, Loss: {train_loss.result()}, MSE: {train_accuracy.result()}')# 进行测试test_padding_mask = create_padding_mask(X_test[:, :, 0])test_look_ahead_mask = create_look_ahead_mask(tf.shape(X_test)[1])test_dec_padding_mask = create_padding_mask(X_test[:, :, 0])predictions = model(X_test, X_test[:, :-1], False, test_padding_mask, test_look_ahead_mask, test_dec_padding_mask)test_loss = loss_object(y_test[:, 1:], predictions)print(f'Test Loss: {test_loss}, MSE: {tf.reduce_mean(tf.square(y_test[:, 1:] - predictions))}')
上面的代码演示了如何构建和训练一个Transformer模型,以及如何使用训练模型进行预测。希望对你有所帮助!
以上回复来自 FishC AI 小助理,如未能正确解答您的问题,请继续追问。 |
|