欧拉计划 发表于 2016-9-14 23:36:51

题目163:直线交叉形成的三角形

Cross-hatched triangles

Consider an equilateral triangle in which straight lines are drawn from each vertex to the middle of the opposite side, such as in the size 1 triangle in the sketch below.



Sixteen triangles of either different shape or size or orientation or location can now be observed in that triangle. Using size 1 triangles as building blocks, larger triangles can be formed, such as the size 2 triangle in the above sketch. One-hundred and four triangles of either different shape or size or orientation or location can now be observed in that size 2 triangle.

It can be observed that the size 2 triangle contains 4 size 1 triangle building blocks. A size 3 triangle would contain 9 size 1 triangle building blocks and a size n triangle would thus contain n2 size 1 triangle building blocks.

If we denote T(n) as the number of triangles present in a triangle of size n, then

    T(1) = 16
    T(2) = 104

Find T(36).

题目:

考虑一个等边三角形,从每个顶点到对边的中点画一条直线,如下图所示的是一个大小为 1 的草图:



从大小为 1 的这个大三角形中,我们可以根据形状、大小、位置的不同发现 16 个不同的三角形。

用大小为 1 的三角形作为模块,可以组成更大的三角形,比如上面的大小为 2 的那个。在这个三角形中,我们可以找到 104 个不同的三角形。


很明显,这个大小为 2 的三角形是由四个大小为 1 的三角形拼接而成,以此类推,大小为 3 时,则需要 9 个,一个大小为 n 的三角形,需要 n2 个大小为 1 的三角形构成。


如果我们定义 T(n) 为大小为 n 的三角形中不同的三角形个数,则:

    T(1) = 16
    T(2) = 104

请给出 T(36) 的值。

页: [1]
查看完整版本: 题目163:直线交叉形成的三角形