|  | 
 
| 
x
马上注册,结交更多好友,享用更多功能^_^您需要 登录 才可以下载或查看,没有账号?立即注册  Cross-hatched triangles
 Consider an equilateral triangle in which straight lines are drawn from each vertex to the middle of the opposite side, such as in the size 1 triangle in the sketch below.
 
 
 
 Sixteen triangles of either different shape or size or orientation or location can now be observed in that triangle. Using size 1 triangles as building blocks, larger triangles can be formed, such as the size 2 triangle in the above sketch. One-hundred and four triangles of either different shape or size or orientation or location can now be observed in that size 2 triangle.
 
 It can be observed that the size 2 triangle contains 4 size 1 triangle building blocks. A size 3 triangle would contain 9 size 1 triangle building blocks and a size n triangle would thus contain n2 size 1 triangle building blocks.
 
 If we denote T(n) as the number of triangles present in a triangle of size n, then
 
 T(1) = 16
 T(2) = 104
 
 Find T(36).
 题目:
 
 考虑一个等边三角形,从每个顶点到对边的中点画一条直线,如下图所示的是一个大小为 1 的草图:
 
 
 
 从大小为 1 的这个大三角形中,我们可以根据形状、大小、位置的不同发现 16 个不同的三角形。
 
 用大小为 1 的三角形作为模块,可以组成更大的三角形,比如上面的大小为 2 的那个。在这个三角形中,我们可以找到 104 个不同的三角形。
 
 
 很明显,这个大小为 2 的三角形是由四个大小为 1 的三角形拼接而成,以此类推,大小为 3 时,则需要 9 个,一个大小为 n 的三角形,需要 n2 个大小为 1 的三角形构成。
 
 
 如果我们定义 T(n) 为大小为 n 的三角形中不同的三角形个数,则:
 
 T(1) = 16
 T(2) = 104
 
 请给出 T(36) 的值。
 
 
 | 
 |