题目228:明可夫斯基和
Minkowski SumsLet Sn be the regular n-sided polygon – or shape – whose vertices vk (k = 1,2,…,n) have coordinates:
xk = cos( 2k-1/n ×180° )
yk = sin( 2k-1/n ×180° )
Each Sn is to be interpreted as a filled shape consisting of all points on the perimeter and in the interior.
The Minkowski sum, S+T, of two shapes S and T is the result of adding every point in S to every point in T, where point addition is performed coordinate-wise: (u, v) + (x, y) = (u+x, v+y).
For example, the sum of S3 and S4 is the six-sided shape shown in pink below:
How many sides does S1864 + S1865 + … + S1909 have?
题目:
设 Sn 为正 n 多边形——或者说为顶点 vk (k = 1,2,…,n) 满足以下坐标的图形:
xk = cos( 2k-1/n ×180°)
yk = sin(2k-1/n ×180°)
每个 Sn 表示一个由边界上和图形内部的点组成的填充图形。
明可夫斯基和 S+T,为 T 中每个点加上 S 中每个点的结果,其中点的加法用坐标表示为:(u, v) + (x, y) = (u+x, v+y)。
例如,S3 与 S4 的和为下面的粉红色六边形:
S1864 + S1865 + … + S1909 有多少条边?
页:
[1]