|
|
发表于 2023-8-6 18:43:09
|
显示全部楼层
这段代码的错误是缩进错误。在第32行的gray_img = np.pad(gray_img, ((1, 1), (1, 1)), constant_values=0)上面有额外的空格导致了IndentationError。以下是修改后的代码:
[code]import math
import numpy as np
import matplotlib.pyplot as plt
# 生成高斯核
def gaussian_create():
sigma1 = sigma2 = 1
gaussian_sum = 0
g = np.zeros([3, 3])
for i in range(3):
for j in range(3):
g[i, j] = math.exp(-1 / 2 * (np.square(i - 1) / np.square(sigma1)
+ (np.square(j - 1) / np.square(sigma2)))) / (
2 * math.pi * sigma1 * sigma2)
gaussian_sum = gaussian_sum + g[i, j]
g = g / gaussian_sum # 归一化
return g
# 产生灰度图
def gray_fuc(rgb):
return np.dot(rgb[..., :3], [0.299, 0.587, 0.114])
# 高斯卷积
def gaussian_blur(gray_img, g):
gray_img = np.pad(gray_img, ((1, 1), (1, 1)), constant_values=0) # 填充
h, w = gray_img.shape
new_gray_img = np.zeros([h - 2, w - 2])
for i in range(h - 2):
for j in range(w - 2):
new_gray_img[i, j] = np.sum(gray_img[i:i + 3, j:j + 3] * g)
return new_gray_img
# 求高斯偏导
def partial_derivative(new_gray_img):
new_gray_img = np.pad(new_gray_img, ((0, 1), (0, 1)), constant_values=0) # 填充
h, w = new_gray_img.shape
dx_gray = np.zeros([h - 1, w - 1]) # 用来存储x方向偏导
dy_gray = np.zeros([h - 1, w - 1]) # 用来存储y方向偏导
df_gray = np.zeros([h - 1, w - 1]) # 用来存储梯度强度
for i in range(h - 1):
for j in range(w - 1):
dx_gray[i, j] = new_gray_img[i, j + 1] - new_gray_img[i, j]
dy_gray[i, j] = new_gray_img[i + 1, j] - new_gray_img[i, j]
df_gray[i, j] = np.sqrt(np.square(dx_gray[i, j]) + np.square(dy_gray[i, j]))
return dx_gray, dy_gray, df_gray
# 非极大值抑制
def non_maximum_suppression(dx_gray, dy_gray, df_gray):
df_gray = np.pad(df_gray, ((1, 1), (1, 1)), constant_values=0) # 填充
h, w = df_gray.shape
for i in range(1, h - 1):
for j in range(1, w - 1):
if df_gray[i, j] != 0:
gx = math.fabs(dx_gray[i - 1, j - 1])
gy = math.fabs(dy_gray[i - 1, j - 1])
if gx > gy:
weight = gy / gx
grad1 = df_gray[i + 1, j]
grad2 = df_gray[i - 1, j]
if gx * gy > 0:
grad3 = df_gray[i + 1, j + 1]
grad4 = df_gray[i - 1, j - 1]
else:
grad3 = df_gray[i + 1, j - 1]
grad4 = df_gray[i - 1, j + 1]
else:
weight = gx / gy
grad1 = df_gray[i, j + 1]
grad2 = df_gray[i, j - 1]
if gx * gy > 0:
grad3 = df_gray[i + 1, j + 1]
grad4 = df_gray[i - 1, j - 1]
else:
grad3 = df_gray[i + 1, j - 1]
grad4 = df_gray[i - 1, j + 1]
t1 = weight * grad1 + (1 - weight) * grad3
t2 = weight * grad2 + (1 - weight) * grad4
if df_gray[i, j] > t1 and df_gray[i, j] > t2:
df_gray[i, j] = df_gray[i, j]
else:
df_gray[i, j] = 0
return df_gray
# 双阈值过滤
def double_threshold(df_gray, low, high):
h, w = df_gray.shape
for i in range(1, h - 1):
for j in range(1, w - 1):
if df_gray[i, j] < low:
df_gray[i, j] = 0
elif df_gray[i, j] > high:
df_gray[i, j] = 1
elif (df_gray[i, j - 1] > high) or (df_gray[i - 1, j - 1] > high) or (
df_gray[i + 1, j - 1] > high) or (df_gray[i - 1, j] > high) or (df_gray[i + 1, j] > high) or (
df_gray[i - 1, j + 1] > high) or (df_gray[i, j + 1] > high) or (df_gray[i + 1, j + 1] > high):
df_gray[i, j] = 1
else:
如果回答对你有帮助,请给我一个最佳答案!  
|
|