|  | 
 
 发表于 2023-8-7 16:04:00
|
显示全部楼层 
| 以下是实现以上步骤的Python代码: 
 
 复制代码import cv2
import numpy as np
# 1. 分割遥感影像为多块图幅
def split_image(image, block_size):
    height, width = image.shape[:2]
    block_images = []
    for i in range(0, height, block_size):
        for j in range(0, width, block_size):
            block = image[i:i+block_size, j:j+block_size]
            block_images.append(block)
    return block_images
# 2. 分别对每块图幅转为灰度图像
def convert_to_gray(image):
    gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    return gray_image
# 3. 对各个图像进行边缘检测
def edge_detection(image):
    edges = cv2.Canny(image, 100, 200)
    return edges
# 4. 消除噪声干扰
def remove_noise(image):
    denoised_image = cv2.medianBlur(image, 5)
    return denoised_image
# 5. 将各个图幅合并为一个图幅
def merge_images(images, block_size):
    rows = int(np.sqrt(len(images)))
    cols = rows
    merged_image = np.zeros((rows * block_size, cols * block_size), dtype=np.uint8)
    for i, image in enumerate(images):
        x = (i % cols) * block_size
        y = (i // cols) * block_size
        merged_image[y:y+block_size, x:x+block_size] = image
    return merged_image
# 6. 导出结果
def export_result(image, file_path):
    cv2.imwrite(file_path, image)
# 示例代码
image_path = "path_to_image.jpg"
block_size = 100
# 读取遥感影像
image = cv2.imread(image_path)
# 1. 分割遥感影像为多块图幅
block_images = split_image(image, block_size)
# 2. 分别对每块图幅转为灰度图像
gray_images = [convert_to_gray(block) for block in block_images]
# 3. 对各个图像进行边缘检测
edges_images = [edge_detection(gray) for gray in gray_images]
# 4. 消除噪声干扰
denoised_images = [remove_noise(edges) for edges in edges_images]
# 5. 将各个图幅合并为一个图幅
merged_image = merge_images(denoised_images, block_size)
# 6. 导出结果
export_result(merged_image, "output.jpg")
 请注意,以上代码是一个示例代码,具体实现可能需要根据你的具体需求进行调整。
 | 
 |