|
马上注册,结交更多好友,享用更多功能^_^
您需要 登录 才可以下载或查看,没有账号?立即注册
x
本帖最后由 欧拉计划 于 2015-5-2 11:22 编辑
Pandigital multiples
Take the number 192 and multiply it by each of 1, 2, and 3:
192 × 1 = 192
192 × 2 = 384
192 × 3 = 576
By concatenating each product we get the 1 to 9 pandigital, 192384576. We will call 192384576 the concatenated product of 192 and (1,2,3)
The same can be achieved by starting with 9 and multiplying by 1, 2, 3, 4, and 5, giving the pandigital, 918273645, which is the concatenated product of 9 and (1,2,3,4,5).
What is the largest 1 to 9 pandigital 9-digit number that can be formed as the concatenated product of an integer with (1,2, ... , n) where n > 1?
题目:
将 192 与 1, 2, 3 分别相乘得到:
192 × 1 = 192
192 × 2 = 384
192 × 3 = 576
将这三个乘积连接起来我们得到一个 1 到 9 的 pandigital 数, 192384576。我们称 192384576 是 192 和 (1,2,3) 的连接积。
通过将 9 与 1, 2, 3, 4 和 5 相乘也可以得到 pandigital 数:918273645,这个数是 9 和 (1,2,3,4,5) 的连接积。
用一个整数与 1,2, ... , n(n 大于 1)的连接积构造而成的 1 到 9 pandigital 数中最大的是多少?
|
|