鱼C论坛

 找回密码
 立即注册
查看: 2501|回复: 0

[原创] 基于python的numpy和pandas模块实现机器学习算法-逻辑回归

[复制链接]
发表于 2019-7-12 01:38:43 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能^_^

您需要 登录 才可以下载或查看,没有账号?立即注册

x
本帖最后由 stonejianbu 于 2019-7-12 02:25 编辑

逻辑回归算法实现

逻辑回归属于分类方法,主要用于解决二分类问题。
本篇文章不对数学概念进行分析,使用代码结合注释的方式,代码部分抽象以下
  • 1.数据准备:pandas读取.data文件和随机划分数据集
  • 2.数据预处理:标准化处理(x -mean)/ 标准差
  • 3.模型:p = f(z) = 1 / (1+ e^-z), 且z=XW+b, p~(0,1) (sigmoid函数)
  • 4.策略:对数似然损失L=-ylog(p)-(1-y)log(1-p)  (极大似然估计)
  • 5.算法:随机梯度下降  (梯度和方向导数)
  • 6.避免过拟合,模型优化:l2正则化  (多项式、范数)
  • 7.数据预测和评估:使用由算法(随机梯度下降优化)得到的权重系数和偏置,计算损失,计算正确率(暂未计算召回率)
import pandas as pd
import numpy as np
import random


class LogisticRegression:
    """
    逻辑回归:
    1.随机生成梯度
    2.计算损失值: z=X.W+b-->p_array=1/(1+e^-z)-->loss=-ylog(p)-(1-y)log(1-p)+regular_item
    3.梯度优化
    """
    def __init__(self, alpha=1, C=1.0, diff=1e-4):
        self.alpha = alpha  # 学习率
        self.C = C          # 正则化系数
        self.diff = diff    # 前后损失差(决定是否终止梯度下降)
        self.mean_cost = None
        self.weight_bias = None
        self.coef = None
        self.intercept = None
        self.m = None
        self.n = None

    def preprocess_data(self, X, y, test_size=0.35):
        """
        1.划分数据为训练集和测试集
        2.对数据进行标准化处理
        :param X: 特征值
        :param y: 目标值
        :param test_size: 测试占总数据集的比例
        :return: 返回X_train, X_test, y_train, y_test
        """
        # 1.划分数据集
        X_train, X_test, y_train, y_test = self.train_test_split(X, y, test_size=test_size)

        # 2.对输入空间进行标准化处理
        X_train, X_test = self.standardization([X_train, X_test])
        return X_train, X_test, y_train, y_test

    def standardization(self, two_arrays):
        """
        std_result = x - mean / std
        :param two_arrays: 可以是一个或者多个二维数组
        :return: 返回标准化后结果数组列表
        """
        arrays = [two_arrays] if isinstance(two_arrays, np.ndarray) else two_arrays
        return [(array - np.mean(array, axis=0)) * (1 / np.std(array, axis=0)) for array in arrays]

    def train_test_split(self, X, y, test_size=0.2):
        # 根据指定的test_size占比划分数据集
        m, n = X.shape
        x_test_number = int(m * test_size)

        # 根据x_test个数随机生成
        test_index = random.sample(range(m), x_test_number)
        train_index = list(set(range(m)) - set(test_index))

        # 划分训练集和测试集
        return X[train_index], X[test_index], y[train_index], y[test_index]

    def transform_X(self, X):
        """X添加一列且值都为1,方便矩阵相乘,X*W+b--->[X,1]*[W,b]"""
        m = X.shape[0]
        bias_array = np.array([1] * m).reshape((-1, 1))
        X = np.concatenate((X, bias_array), axis=1)
        return X

    def fit(self, X, y):
        """
        1.对X,y进一步处理(1.1 给X添加一列且值都为1,为方便矩阵相乘,该列对应偏置 1.2.将X,y数组转为矩阵)
        2.梯度下降求解(2.1 随机生成系数计算损失值 2.2 计算梯度 2.3 更新系数计算损失值 2.4.循环第二、三步 2.5.当达到终止条件停止)
        :param X: 预处理过的特征值
        :param y: 预处理过的目标值
        :return: 返回类实例本身self
        """
        # 1.对X, y转换处理(X-->(m,n), y-->(m,1))
        X = self.transform_X(X)
        y = np.array(y).reshape(-1, 1)
        self.m, self.n = X.shape

        # 2.梯度下降求解最小损失值--->最优系数(权重和偏置)
        self.gradient_descent_optimization(X, y)
        return self

    def gradient_descent_optimization(self, X, y):
        """
        1.更新权重和偏置(1.1 计算梯度grad 1.2 更新权重偏置weight_bias = weight_bias - alpha*grad)
        2.计算损失函数值(2.1.求出预测值 2.2.计算sigmoid可能性 2.3.计算损失)
        3.梯度下降优化(3.1 计算梯度 3.2.更新系数 3.3 计算损失 3.4.循环(当达到终于条件停止))
        4.更新实例属性值(coef,intercept,,mean_cost)
        :param X: 预处理过的特征值
        :param y: 预处理过的目标值
        :return: 返回类实例本身self
        """
        # 1.随机生成系数(权重和偏置)(weight_bias-->(n,1))
        weight_bias = np.random.randn(self.n, 1)

        # 2.计算损失函数值(2.1.求出预测值 2.2.计算sigmoid可能性大小 2.3.计算对数似然损失值)
        mean_cost = self.calc_cost(X, y, weight_bias)

        # 3.梯度下降优化系数使得损失函数变小,循环迭代直到满足终止条件
        pre_mean_cost = 0
        cur_mean_cost = mean_cost
        while abs(pre_mean_cost - cur_mean_cost) > self.diff:
            # 3.1 计算梯度grad = <W1,...,Wn,b>, 即关于损失函数对系数w1,w2...求偏导
            grad = self.calc_gradient(X, y, weight_bias)
            # print(grad)

            # 3.2 更新系数(权重和偏置)
            weight_bias = weight_bias*(1-self.C*self.alpha/self.m) - self.alpha * grad
            # print('第%s次迭代,weight_bias:%s' % (n, weight_bias))

            # 3.3计算损失函数值(2.1.求出预测值 2.2.计算sigmoid可能性 2.3.计算对数似然损失)
            mean_cost = self.calc_cost(X, y, weight_bias)

            # 3.4 更新损失值:过去=现在 现在=当下(查看前后损失值的变化来决定是否停止迭代)
            pre_mean_cost = cur_mean_cost
            cur_mean_cost = mean_cost

        # 4.更新实例属性值
        self.weight_bias = weight_bias
        self.coef, self.intercept = self.weight_bias[:-1].flatten(), self.weight_bias[-1].flatten()
        self.mean_cost = mean_cost
        return self

    def calc_cost(self, X, y, weight_bias):
        # 1.计算sigmoid: p = 1 / (1 + e^(-z))
        p_array = self.calc_sigmoid(X, weight_bias)

        # 2.计算损失值: -ylog(p)-(1-y)log(1-p) + regular_item
        # 2.1.添加正则化项,减轻过拟合问题
        regular_item = (self.C / 2 * self.m) * np.dot(weight_bias[:-1].T, weight_bias[:-1])

        # 2.2确保y,p_array转换为1维数组,方便使用索引获取值
        y_array, p_array = y.flatten(), p_array.flatten()

        # 2.3.计算平均损失值cost = 1/m * (-y*log(p) - (1-y)*log(1-p)),避免p或1-p为零,添加1e-5
        cost = lambda y, p: -y * np.log(p + 1e-5) - (1 - y) * np.log(1 - p + 1e-5)
        mean_cost = 1 / self.m * sum([cost(y_array[i], p_array[i]) for i in range(self.m)]) + float(regular_item)
        return mean_cost

    def calc_sigmoid(self, X, weight_bias):
        # 1.矩阵相乘:特征值(m,n) * 特征系数(n,1) = z ~(m,1)
        z_array = np.dot(X, weight_bias)

        # 2.计算sigmoid
        p_array = [1 / (1 + np.e ** (-i)) for i in z_array.flatten()]
        return np.array(p_array).reshape(-1, 1)

    def calc_gradient(self, X, y, weight_bias):
        """计算梯度W = X.T*(p_array-y)--->(m,n).T* (m, 1)"""
        # 1. 计算sigmoid= 1 / (1 + e^-z)
        p_array = self.calc_sigmoid(X, weight_bias)

        # 2.计算梯度grad = (n,m) * (m, 1)--->(n, 1)
        grad = np.dot(X.T, p_array-y) * (1/self.m)
        return grad

    def predict(self, X):
        """
        1. 计算y = X*weight_bias
        2. 计算sigmoid(如果概率大于0.5则标记为1,否则标记为0)
        :param X: 测试集的特征值
        :return: 返回预测的分类结果
        """
        X = self.transform_X(X)
        p_array = self.calc_sigmoid(X, self.weight_bias)
        y_predict = list(map(lambda x: 1 if x >= 0.5 else 0, p_array))
        return np.array(y_predict).reshape(-1, 1)

    def score(self, X, y):
        """
        计算模型的准确率:正确个数/总个数
        1. 计算预测的分类结果
        2. 实际分类结果和预测分类结果进行对比计算
        :param X: 特征值
        :param y: 目标值
        :return: 准确率
        """
        # 1.计算预测分类的结果
        y_predict = self.predict(X)

        # 2.计算预测正确的分类数(循环判断,相同增加1,得到correct_number)
        y, y_predict = y.flatten(), y_predict.flatten()
        m = y_predict.shape[0]
        correct_number = sum([True for i in range(m) if y[i] == y_predict[i]])

        # 3.计算正确率:正确个数/总个数(保留小数点后两位)
        possiblity = round(correct_number/m, ndigits=4)
        return possiblity


if __name__ == '__main__':
    # data = pd.read_csv('./data/iris_data.csv')
    # X, y = data.iloc[:, 0:-1].values, data.iloc[:, -1:].values

    # 癌症数据集https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/
    data = pd.read_csv('./data/wdbc.data')
    X, y = data.iloc[:, 2:].values, data.iloc[:, 1]
    y = y.replace('M', 1)
    y = y.replace('B', 0).values
    # 确保X, y输入为(m,n) (m,1)

    # 实例化LogisticRegression
    logistic = LogisticRegression()

    # 对输入的数据进行预处理:划分数据集和标准化处理
    X_train, X_test, y_train, y_test = logistic.preprocess_data(X, y)
    # X_train, X_test, y_train, y_test = logistic.train_test_split(X, y)
    # X_train, X_test = logistic.standardization([X_train, X_test])
    # print(X_train)
    # print(X_test)

    # 训练模型
    logistic.fit(X_train, y_train)

    # # 查看对数似然损失
    print(logistic.mean_cost)
    print(logistic.coef)
    print(logistic.intercept)

    y_predict = logistic.predict(X_test)
    print('预测分类结果为:', y_predict.flatten())
    print('实际分类结果为:', y_test.flatten())
    print('预测准确率为:', logistic.score(X_test, y_test))

代码部分的注释较为详细,如代码部分有疑问,可评论交流共同进步。如有鱼油难以理解,可能需要先了解数学概念(如线性代数部分的矩阵和行列式运算,导数和方向导数以及范数和最大似然估计值的基本概念),这里不做解释。推荐阅读相应经典数据--教科书!
想知道小甲鱼最近在做啥?请访问 -> ilovefishc.com
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

小黑屋|手机版|Archiver|鱼C工作室 ( 粤ICP备18085999号-1 | 粤公网安备 44051102000585号)

GMT+8, 2025-1-2 23:32

Powered by Discuz! X3.4

© 2001-2023 Discuz! Team.

快速回复 返回顶部 返回列表