|
马上注册,结交更多好友,享用更多功能^_^
您需要 登录 才可以下载或查看,没有账号?立即注册
x
Write a program to find the n-th ugly number.
Ugly numbers are positive integers which are divisible by a or b or c.
Example 1:
Input: n = 3, a = 2, b = 3, c = 5
Output: 4
Explanation: The ugly numbers are 2, 3, 4, 5, 6, 8, 9, 10... The 3rd is 4.
Example 2:
Input: n = 4, a = 2, b = 3, c = 4
Output: 6
Explanation: The ugly numbers are 2, 3, 4, 6, 8, 9, 10, 12... The 4th is 6.
Example 3:
Input: n = 5, a = 2, b = 11, c = 13
Output: 10
Explanation: The ugly numbers are 2, 4, 6, 8, 10, 11, 12, 13... The 5th is 10.
Example 4:
Input: n = 1000000000, a = 2, b = 217983653, c = 336916467
Output: 1999999984
Constraints:
1 <= n, a, b, c <= 10^9
1 <= a * b * c <= 10^18
It's guaranteed that the result will be in range [1, 2 * 10^9]
class Solution {
public static int nthUglyNumber(int n, int a, int b, int c) {
int start = 1,end = Integer.MAX_VALUE,mid;
while(start < end){
mid = start + (end - start) / 2;
if(count(a,b,c,mid) < n) start = mid + 1;
else {
end = mid;
}
}
return end;
}
static long stein(long a, long b){
int acc = 0;
while ((a & 1) == 0 && (b & 1) == 0) {
acc++;
a >>= 1;
b >>= 1;
}
while ((a & 1) == 0) a >>= 1;
while ((b & 1) == 0) b >>= 1;
if (a < b) { long t = a; a = b; b = t; }
while ((a = (a - b) >> 1) != 0) {
while ((a & 1) == 0) a >>= 1;
if (a < b) { long t = a; a = b; b = t; }
}
return b << acc;
}
static long lcm(long a, long b){
return a*b / stein(a,b);
}
static long count (long a, long b, long c, long num){
return ((num / a) + (num / b) + (num / c)
- (num / lcm(a, b))
- (num / lcm(b, c))
- (num / lcm(a, c))
+ (num / lcm(a, lcm(b, c))));
}
}
|
|