马上注册,结交更多好友,享用更多功能^_^
您需要 登录 才可以下载或查看,没有账号?立即注册
x
Given an array nums containing n + 1 integers where each integer is between 1 and n (inclusive), prove that at least one duplicate number must exist. Assume that there is only one duplicate number, find the duplicate one.
Example 1:
Input: [1,3,4,2,2]
Output: 2
Example 2:
Input: [3,1,3,4,2]
Output: 3
Note:
You must not modify the array (assume the array is read only).
You must use only constant, O(1) extra space.
Your runtime complexity should be less than O(n2).
There is only one duplicate number in the array, but it could be repeated more than once.
1.暴力解法class Solution {
public int findDuplicate(int[] nums) {
if(nums.length == 0) return 0;
for(int i = 0; i< nums.length-1; i++) {
for(int j = i+1; j < nums.length; j++){
if(nums[i] == nums[j]) {
// System.out.println(nums[i]);
return nums[i];
}
}
}
return -1;
}
}
2.two pointers
class Solution {
public int findDuplicate(int[] nums) {
int slow = nums[0];
int fast = nums[0];
slow = nums[slow];
fast = nums[nums[fast]];
while(slow != fast){
slow = nums[slow];
fast = nums[nums[fast]];
}
int a = nums[0];
int b = slow;
while(a != b){
a = nums[a];
b = nums[b];
}
return a;
}
}
3.二分法
class Solution {
public int findDuplicate(int[] nums) {
int min = 0;
int max = nums.length;
while(min <= max){
int mid = (max - min)/2 + min;
int count = 0;
for(int i = 0; i < nums.length; i++){
if(nums[i] <= mid){
count++;
}
}
if(count > mid){
max = mid -1;
}
else{
min = mid + 1;
}
}
return min;
}
}
|