鱼C论坛

 找回密码
 立即注册
查看: 1947|回复: 2

计算机程序设计常用方法“起死回生” 初章 基本篇 第一篇 递归方法

[复制链接]
发表于 2019-11-13 17:39:44 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能^_^

您需要 登录 才可以下载或查看,没有账号?立即注册

x
本帖最后由 沉默的人e 于 2019-11-15 13:27 编辑


                               
登录/注册后可看大图


本帖被以下淘专辑推荐:

想知道小甲鱼最近在做啥?请访问 -> ilovefishc.com
回复

使用道具 举报

 楼主| 发表于 2019-11-15 13:26:21 | 显示全部楼层
                                        初章-基本篇
第一篇递归方法
这应该是最初见到的方法。
好了问题来了。什么是递归?
之前在小甲鱼论坛里发了个帖子,叫我看递归。结果发现效果很差,懂了的人懂了,没懂的人依然没懂。
递归分为两步,首先是,就是递推,如果大家学过数列的话,数列里除了通项公式,还有一种叫递推公式对吧。
这里的递推就是这个意思。在数列里,递推公式就是像 公式1.png 的公式。通过这个递推公式也很容易知道,通项公式是 公式2.png 好巧不巧的是,这里为什么会多出来一个C?这就是递推的结果,由于不知道最下面一层返回了什么,所以不能确定最终结果是什么。所以才会出现这么一个C
为了解决这个C的问题,就需要用到回归。告诉这个公式,最底下一层是什么。于是完美的递归公式,就应该是这样的:
公式3.png

n的值由用户来决定,而且上面的公式由于都是a下的法则,所以对于n-1也可以按照上面的公式进行处理,一层一层的,一直到n= 1 的时候。对n= 1 进行特殊处理(第二个公式)以后,层层返回。
这个例子如果没有让诸位同胞们开窍,我再举几个。
比如,写出等差数列求和的函数(递归方法)。
同样的,先写出递推内容,暂时让公差为1。思考一下过程。比如我让它从上往下加,从最大的往下加。每一次都加的是比这个数小一的数。假设次数为x,那么加的过程是:x+ x-1 + x-1-1 + x-1-1-1+...,对吧。现在给这个东西压上括号:x+ (x-1 + (x-1-1 +(x-1-1-1+(...))))。每一层都只保留一个待知数x,从数学公式上也行的通。现在分析这个带括号的东西,x加上一个整体,这个整体把x-1扔出去,然后将剩下的部分再作为整体,同样的下面的整体把x-1-1扔出去,剩下的作为整体……
我们惊奇的发现,除了值有那么一丢丢的偏差,从形式上看,完全相同。现在思考形式,每一次都是单独的变量被扔出去,然后加一个整体,整体中也在进行着同样的操作,所以他们按照同样的对应法则处理数据。假设这个法则是f,那么很简单的,我们可以得到这个公式 公式4.png

我说了,这只是递推.没有回归,要想回归,要明白在最底层时应该是什么。举个例子,我令最底层为1,也就是说f(1)= 1。整合起来公式应该这么写:
公式5.png

稍微思考,就可以知道,这是求1+2+3+...+100的和。

想知道小甲鱼最近在做啥?请访问 -> ilovefishc.com
回复 支持 反对

使用道具 举报

 楼主| 发表于 2019-11-15 13:27:39 | 显示全部楼层
本帖最后由 沉默的人e 于 2019-12-11 17:32 编辑

再举一个例子,汉诺塔。这个例子被很多老师用,因为太经典了。

规则不说了。假设第一个柱上有n个片片,三个柱子叫a,b,c

每次移动的方式都是相同的,起个名字叫做hanoi方法。要将n个片片从a通过b移动到c。移动的方法是将在最上面的n-1个片片通过b移动到c,将a上的最下面的片片移动到c。同样的道理,b上的所有片片也是执行这样的hanoi方法移动到c上就可以了。因为每一次的移动都是按照这个hanoi方法,变的仅仅是你的片片的数,而从a移动到c要保留最下面的片片,所以从b移动到c上的时候片片数n变成了n-1。

hanoi方法写成算法是这样的:

第一步,利用hanoi方法(递推)将a上的(n-1)个片片移动到b上;(把第二步视为最底层)

第二步,将最后一个片片移动到c上(这里是回归)

第三步,将b上的(n-1)个片片利用hanoi方法移动到c上。(这里又是递推,第二步可以视为是递推的最底层)

使用递归的前提条件是,每一层运用的方法都是相同的,如果不相同,当然不能运用递推回归方法。更重要的是,你写的函数如果有递推,就一定要有回归。

这就是我对递归的理解,上面的几个例子希望能对个位鱼友有所帮助。如果仍有什么没说清楚的,请各位在下方留言。
想知道小甲鱼最近在做啥?请访问 -> ilovefishc.com
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

小黑屋|手机版|Archiver|鱼C工作室 ( 粤ICP备18085999号-1 | 粤公网安备 44051102000585号)

GMT+8, 2024-12-22 18:58

Powered by Discuz! X3.4

© 2001-2023 Discuz! Team.

快速回复 返回顶部 返回列表