| 
 | 
 
马上注册,结交更多好友,享用更多功能^_^
您需要 登录 才可以下载或查看,没有账号?立即注册  
 
x
 
各位大佬们,我想问一下,我自己写了个VGG16的网络,然后把处理好的图像经过它,可是为什么会报这个错误呢??望各位大佬指教 
错误类型:'tuple' object has no attribute 'ndims' 
- import tensorflow as tf
 
 - import cv2
 
 - import numpy as np
 
 - img_address = 'C:\\Users\\Administrator\\Desktop\\faster-rcnn-keras-master\\img\\street.jpg'
 
  
- def VGG(inputs):
 
 -     x = inputs
 
 -     # Conv1
 
 -     x = tf.keras.layers.Conv2D(filters=64, kernel_size=(3,3), padding='Same', activation=tf.nn.relu)(x)
 
 -     x = tf.keras.layers.Conv2D(filters=64, kernel_size=(3,3), padding='Same', activation=tf.nn.relu)(x)
 
 -     x - tf.keras.layers.MaxPooling2D(pool_size=(2,2), strides=2)(x)
 
 -     # Conv2
 
 -     x = tf.keras.layers.Conv2D(filters=128, kernel_size=(3,3), padding='Same', activation=tf.nn.relu)(x)
 
 -     x = tf.keras.layers.Conv2D(filters=128, kernel_size=(3,3), padding='Same', activation=tf.nn.relu)(x)
 
 -     x = tf.keras.layers.MaxPooling2D(pool_size=(2,2), strides=2)(x)
 
 -     # Conv3
 
 -     x = tf.keras.layers.Conv2D(256, (3, 3), padding='Same', activation=tf.nn.relu)(x)
 
 -     x = tf.keras.layers.Conv2D(256, (3, 3), padding='Same', activation=tf.nn.relu)(x)
 
 -     x = tf.keras.layers.Conv2D(256, (3, 3), padding='Same', activation=tf.nn.relu)(x)
 
 -     x = tf.keras.layers.MaxPooling2D(pool_size=(2, 2), strides=2)(x)
 
 -     # Conv4
 
 -     x = tf.keras.layers.Conv2D(512, (3, 3), padding='Same', activation=tf.nn.relu)(x)
 
 -     x = tf.keras.layers.Conv2D(512, (3, 3), padding='Same', activation=tf.nn.relu)(x)
 
 -     x = tf.keras.layers.Conv2D(512, (3, 3), padding='Same', activation=tf.nn.relu)(x)
 
 -     x = tf.keras.layers.MaxPooling2D(pool_size=(2, 2), strides=2)(x)
 
 -     # Conv5
 
 -     x = tf.keras.layers.Conv2D(512, (3, 3), padding='Same', activation=tf.nn.relu)(x)
 
 -     x = tf.keras.layers.Conv2D(512, (3, 3), padding='Same', activation=tf.nn.relu)(x)
 
 -     x = tf.keras.layers.Conv2D(512, (3, 3), padding='Same', activation=tf.nn.relu)(x)
 
 -     x = tf.keras.layers.MaxPooling2D(pool_size=(2, 2), strides=2)(x)
 
 -     return x
 
  
 
- def img_solve():
 
 -     img = cv2.imread(img_address)
 
 -     img_shape = img.shape[0:2]
 
 -     img_shape_short = np.min(img_shape)
 
 -     ratio_img = 600. / img_shape_short
 
 -     img_collected = cv2.resize(img, (int(img_shape[0] * ratio_img), int(img_shape[1] * ratio_img)))
 
 -     img_collected = np.expand_dims(img_collected.astype(np.float32) / 255.0, axis=-1)
 
 -     return img_collected
 
  
- img = img_solve()
 
 - a= VGG(img)
 
  
- print(img.shape)
 
 
  复制代码 |   
 
 
 
 |