|
马上注册,结交更多好友,享用更多功能^_^
您需要 登录 才可以下载或查看,没有账号?立即注册
x
各位大佬们,我想问一下,我自己写了个VGG16的网络,然后把处理好的图像经过它,可是为什么会报这个错误呢??望各位大佬指教
错误类型:'tuple' object has no attribute 'ndims'
- import tensorflow as tf
- import cv2
- import numpy as np
- img_address = 'C:\\Users\\Administrator\\Desktop\\faster-rcnn-keras-master\\img\\street.jpg'
- def VGG(inputs):
- x = inputs
- # Conv1
- x = tf.keras.layers.Conv2D(filters=64, kernel_size=(3,3), padding='Same', activation=tf.nn.relu)(x)
- x = tf.keras.layers.Conv2D(filters=64, kernel_size=(3,3), padding='Same', activation=tf.nn.relu)(x)
- x - tf.keras.layers.MaxPooling2D(pool_size=(2,2), strides=2)(x)
- # Conv2
- x = tf.keras.layers.Conv2D(filters=128, kernel_size=(3,3), padding='Same', activation=tf.nn.relu)(x)
- x = tf.keras.layers.Conv2D(filters=128, kernel_size=(3,3), padding='Same', activation=tf.nn.relu)(x)
- x = tf.keras.layers.MaxPooling2D(pool_size=(2,2), strides=2)(x)
- # Conv3
- x = tf.keras.layers.Conv2D(256, (3, 3), padding='Same', activation=tf.nn.relu)(x)
- x = tf.keras.layers.Conv2D(256, (3, 3), padding='Same', activation=tf.nn.relu)(x)
- x = tf.keras.layers.Conv2D(256, (3, 3), padding='Same', activation=tf.nn.relu)(x)
- x = tf.keras.layers.MaxPooling2D(pool_size=(2, 2), strides=2)(x)
- # Conv4
- x = tf.keras.layers.Conv2D(512, (3, 3), padding='Same', activation=tf.nn.relu)(x)
- x = tf.keras.layers.Conv2D(512, (3, 3), padding='Same', activation=tf.nn.relu)(x)
- x = tf.keras.layers.Conv2D(512, (3, 3), padding='Same', activation=tf.nn.relu)(x)
- x = tf.keras.layers.MaxPooling2D(pool_size=(2, 2), strides=2)(x)
- # Conv5
- x = tf.keras.layers.Conv2D(512, (3, 3), padding='Same', activation=tf.nn.relu)(x)
- x = tf.keras.layers.Conv2D(512, (3, 3), padding='Same', activation=tf.nn.relu)(x)
- x = tf.keras.layers.Conv2D(512, (3, 3), padding='Same', activation=tf.nn.relu)(x)
- x = tf.keras.layers.MaxPooling2D(pool_size=(2, 2), strides=2)(x)
- return x
- def img_solve():
- img = cv2.imread(img_address)
- img_shape = img.shape[0:2]
- img_shape_short = np.min(img_shape)
- ratio_img = 600. / img_shape_short
- img_collected = cv2.resize(img, (int(img_shape[0] * ratio_img), int(img_shape[1] * ratio_img)))
- img_collected = np.expand_dims(img_collected.astype(np.float32) / 255.0, axis=-1)
- return img_collected
- img = img_solve()
- a= VGG(img)
- print(img.shape)
复制代码 |
|