|
马上注册,结交更多好友,享用更多功能^_^
您需要 登录 才可以下载或查看,没有账号?立即注册
x
本帖最后由 Seawolf 于 2020-9-24 02:14 编辑
Given a string s, partition s such that every substring of the partition is a palindrome.
Return the minimum cuts needed for a palindrome partitioning of s.
Example 1:
Input: s = "aab"
Output: 1
Explanation: The palindrome partitioning ["aa","b"] could be produced using 1 cut.
Example 2:
Input: s = "a"
Output: 0
Example 3:
Input: s = "ab"
Output: 1
Constraints:
1 <= s.length <= 2000
s consists of lower-case English letters only.
- class Solution:
- def minCut(self, s: str) -> int:
- if s == None or len(s) == 0:
- return 0
-
- # optimize 0-cut and 1-cut
- if s == s[::-1]: return 0
- for i in range(1, len(s)):
- if s[:i] == s[:i][::-1] and s[i:] == s[i:][::-1]:
- return 1
-
- # normal case
- dp = [math.inf for _ in range(len(s) + 1)]
- dp[0] = 0
-
- def cal_palindrome():
- palindrome = [[False for _ in s] for _ in s]
- N = len(s)
-
- # Odd
- for i in range(N):
- left = right = i
- while left >= 0 and right < N and s[left] == s[right]:
- palindrome[left][right] = True
- left -= 1
- right += 1
-
- # Even
- for i in range(N):
- left, right = i, i + 1
- while left >= 0 and right < N and s[left] == s[right]:
- palindrome[left][right] = True
- left -= 1
- right += 1
- return palindrome
-
- palindrome = cal_palindrome()
-
- for i in range(1, len(s) + 1):
- for j in range(i):
- if palindrome[j][i - 1]:
- dp[i] = min(dp[i], dp[j] + 1)
-
- # number of cut equals to number of palindrome - 1
- return dp[len(s)] - 1
复制代码 |
|