|
马上注册,结交更多好友,享用更多功能^_^
您需要 登录 才可以下载或查看,没有账号?立即注册
x
本帖最后由 糖逗 于 2020-12-26 20:54 编辑
论文:https://www.csie.ntu.edu.tw/~cjlin/papers/ffm.pdf
参考:https://zhuanlan.zhihu.com/p/170607706
说明:待验证
- import tensorflow as tf
- from tensorflow.keras import layers, optimizers
- from tensorflow import keras
- from sklearn.model_selection import train_test_split
- import numpy as np
- #将数据划分为测试集和训练集
- def preprocess(x, y):
- x = tf.cast(x, dtype = tf.float64)
- y = tf.cast(y, dtype = tf.int64)
- return x, y
- from sklearn.datasets import load_breast_cancer
- from sklearn.model_selection import train_test_split
- data = load_breast_cancer()
- x_train, x_test, y_train, y_test = train_test_split(data.data, data.target, test_size=0.2,
- random_state = 11, stratify = data.target)
- print(x_train.shape, y_train.shape, x_test.shape, y_test.shape)
- train_db = tf.data.Dataset.from_tensor_slices((np.array(x_train), y_train))
- train_db = train_db.shuffle(123).map(preprocess).batch(20)
- test_db = tf.data.Dataset.from_tensor_slices((np.array(x_test), y_test))
- test_db = test_db.map(preprocess).batch(20)
- sample = next(iter(train_db))
- print('sample:', sample[0].shape, sample[1].shape,
- tf.reduce_min(sample[0]), tf.reduce_max(sample[0]))
复制代码
- class FFM(keras.Model):
- def __init__(self, field_num, feature_field_dict, dim_num, k = 2):
- super(FFM, self).__init__()
- self.field_num = field_num
- self.k = k
- self.feature_field_dict = feature_field_dict
- self.dim_num = dim_num
- def build(self, input_shape):
- self.fc = tf.keras.layers.Dense(units = 1,
- bias_regularizer = tf.keras.regularizers.l2(0.01),
- kernel_regularizer = tf.keras.regularizers.l1(0.02))
- self.w = self.add_weight(shape = (input_shape[-1], self.field_num, self.k),
- initializer = 'glorot_uniform',
- trainable = True)
- super(FFM, self).build(input_shape)
-
- def call(self, x, training):
- linear = self.fc(x)
- temp = tf.cast(0, tf.float32)
- temp = tf.expand_dims(temp, axis = 0)
- for j1 in range(self.dim_num):
- for j2 in range(j1 + 1, self.dim_num):
- f1 = self.feature_field_dict[j2]
- f2 = self.feature_field_dict[j1]
- #[, , k] * [, , k] = [, , k] -> [1, k]
- ww = tf.expand_dims(tf.multiply(self.w[j1, f2, :], self.w[j2, f1, :]), axis = 0)
- #[x, ] * [x, ] = [x, ] -> [x, 1]
- xx = tf.expand_dims(tf.multiply(x[:, j1], x[:, j2]),axis = 1)
- #[x, 1] @ [1, k] = [x, k]
- store = tf.matmul(xx, ww)
- #[x, k] -> [x]
- temp += tf.reduce_mean(store, keepdims = True, axis = 1)
- out = layers.Add()([linear, temp])
- return tf.sigmoid(out)
- store = {}
- for i in range(30):
- store[i] = int(i / 15)
- model = FFM(field_num = 2, feature_field_dict = store, dim_num = 30)
- model.build((None, 30))
- model.summary()
复制代码
- def main():
- store = {}
- for i in range(30):
- store[i] = int(i / 15) #实际要根据数据字段含义定义,这里只是做一个随意的分组
- model = FFM(field_num = 2, feature_field_dict = store, dim_num = 30)
- optimizer = optimizers.Adam(lr = 1e-2)
- for epoch in range(50):
- for step, (x,y) in enumerate(train_db):
- with tf.GradientTape() as tape:
- logits = model(x,training=True)
- loss = tf.reduce_mean(tf.losses.binary_crossentropy(y, logits))
- loss_regularization = []
- for i in model.trainable_variables:
- loss_regularization.append(tf.nn.l2_loss(i))
- loss_regularization = tf.reduce_sum(tf.stack(loss_regularization))
- loss = 0.001 * loss_regularization + loss
- grads = tape.gradient(loss, model.trainable_variables)
- optimizer.apply_gradients(zip(grads, model.trainable_variables))
- print(epoch, step, 'loss:', float(loss))
-
- total_num = 0
- total_correct = 0
- for x,y in test_db:
- pred = model(x, training=False)
- pred = tf.squeeze(pred)
- pred = pred > 0.5
- pred = tf.cast(pred, dtype = tf.int64)
- correct = tf.cast(tf.equal(pred, y), tf.int64)
- correct = tf.reduce_sum(correct)
- total_num += x.shape[0]
- total_correct += int(correct)
- acc = total_correct / total_num
- print(epoch, 'acc:', acc)
- print("-"*25)
-
- if __name__ == '__main__':
- main()
复制代码 |
|