鱼C论坛

 找回密码
 立即注册
查看: 1796|回复: 3

[已解决]关于EON和scipy模块的求助

[复制链接]
发表于 2023-3-27 22:26:39 | 显示全部楼层 |阅读模式
40鱼币
求助,按照网站https://epidemicsonnetworks.read ... d.html#installation的代码运行的,但是报错了...想请问下为什么
import networkx as nx
import matplotlib.pyplot as plt
import EoN

N=10**5
G=nx.barabasi_albert_graph(N, 5) #create a barabasi-albert graph

tmax = 20
iterations = 5  #run 5 simulations
tau = 0.1           #transmission rate
gamma = 1.0    #recovery rate
rho = 0.005      #random fraction initially infected

for counter in range(iterations): #run simulations
    t, S, I, R = EoN.fast_SIR(G, tau, gamma, rho=rho, tmax = tmax)
    if counter == 0:
        plt.plot(t, I, color = 'k', alpha=0.3, label='Simulation')
    plt.plot(t, I, color = 'k', alpha=0.3)

#Now compare with ODE predictions.  Read in the degree distribution of G
#and use rho to initialize the various model equations.
#There are versions of these functions that allow you to specify the
#initial conditions rather than starting from a graph.

#we expect a homogeneous model to perform poorly because the degree
#distribution is very heterogeneous
t, S, I, R = EoN.SIR_homogeneous_pairwise_from_graph(G, tau, gamma, rho=rho, tmax = tmax)
plt.plot(t, I, '-.', label = 'Homogeneous pairwise', linewidth = 5)

#meanfield models will generally overestimate SIR growth because they
#treat partnerships as constantly changing.
t, S, I, R = EoN.SIR_heterogeneous_meanfield_from_graph(G, tau, gamma, rho=rho, tmax=tmax)
plt.plot(t, I, ':', label = 'Heterogeneous meanfield', linewidth = 5)

#The EBCM model does not account for degree correlations or clustering
t, S, I, R = EoN.EBCM_from_graph(G, tau, gamma, rho=rho, tmax = tmax)
plt.plot(t, I, '--', label = 'EBCM approximation', linewidth = 5)

#the preferential mixing model captures degree correlations.
t, S, I, R = EoN.EBCM_pref_mix_from_graph(G, tau, gamma, rho=rho, tmax=tmax)
plt.plot(t, I, label = 'Pref mix EBCM', linewidth=5, dashes=[4, 2, 1, 2, 1, 2])

plt.xlabel('$t$')
plt.ylabel('Number infected')

plt.legend()
plt.savefig('SIR_BA_model_vs_sim.png')


import networkx as nx
import matplotlib.pyplot as plt
import EoN

plt.clf()

#Now run for SIS.   Simulation is much slower so need smaller network
N=10**4
G=nx.barabasi_albert_graph(N, 5) #create a barabasi-albert graph
for counter in range(iterations):
    t, S, I = EoN.fast_SIS(G, tau, gamma, rho=rho, tmax = tmax)
    if counter == 0:
        plt.plot(t, I, color = 'k', alpha=0.3, label='Simulation')
    plt.plot(t, I, color = 'k', alpha=0.3)

#Now compare with ODE predictions.  Read in the degree distribution of G
#and use rho to initialize the various model equations.
#There are versions of these functions that allow you to specify the
#initial conditions rather than starting from a graph.

#we expect a homogeneous model to perform poorly because the degree
#distribution is very heterogeneous
t, S, I = EoN.SIS_homogeneous_pairwise_from_graph(G, tau, gamma, rho=rho, tmax = tmax)
plt.plot(t, I, '-.', label = 'Homogeneous pairwise', linewidth = 5)

t, S, I = EoN.SIS_heterogeneous_meanfield_from_graph(G, tau, gamma, rho=rho, tmax=tmax)
plt.plot(t, I, ':', label = 'Heterogeneous meanfield', linewidth = 5)

t, S, I = EoN.SIS_compact_pairwise_from_graph(G, tau, gamma, rho=rho, tmax=tmax)
plt.plot(t, I, '--', label = 'Compact pairwise', linewidth = 5)

plt.xlabel('$t$')
plt.ylabel('Number infected')
plt.legend()
plt.savefig('SIS_BA_model_vs_sim.png')
import EoN
import networkx as nx
from matplotlib import rc
import matplotlib.pylab as plt


import scipy
import random



colors = ['#5AB3E6','#FF2000','#009A80','#E69A00', '#CD9AB3', '#0073B3',
        '#F0E442']

#commands to make legend be in LaTeX font
#rc('font', **{'family': 'serif', 'serif': ['Computer Modern']})
rc('text', usetex=True)



rho = 0.025
target_k = 6
N=10000
tau = 0.5
gamma = 1.
ts = scipy.arange(0,40,0.05)
count = 50 #number of simulations to run for each



def generate_network(Pk, N, ntries = 100):
    r'''Generates an N-node random network whose degree distribution is given by Pk'''
    counter = 0
    while counter< ntries:
        counter += 1
        ks = []
        for ctr in range(N):
            ks.append(Pk())
        if sum(ks)%2 == 0:
            break
    if sum(ks)%2 ==1:
        raise EoN.EoNError("cannot generate even degree sum")
    G = nx.configuration_model(ks)
    return G



#An erdos-renyi network has a Poisson degree distribution.
def PkPoisson():
    return scipy.random.poisson(target_k)
def PsiPoisson(x):
    return scipy.exp(-target_k*(1-x))
def DPsiPoisson(x):
    return target_k*scipy.exp(-target_k*(1-x))



#a regular (homogeneous) network has a simple generating function.

def PkHomogeneous():
    return target_k
def PsiHomogeneous(x):
    return x**target_k
def DPsiHomogeneous(x):
    return target_k*x**(target_k-1)




#The following 30 - 40 lines or so are devoted to defining the degree distribution
#and the generating function of the truncated power law network.

#defining the power law degree distribution here:
assert(target_k==6) #if you've changed target_k, then you'll
                #want to update the range 1..61 and/or
                #the exponent 1.5.

PlPk = {}
exponent = 1.5
kave = 0
for k in range(1,61):
    PlPk[k]=k**(-exponent)
    kave += k*PlPk[k]

normfactor= sum(PlPk.values())
for k in PlPk:
    PlPk[k] /= normfactor

def PkPowLaw():
    r = random.random()
    for k in PlPk:
        r -= PlPk[k]
        if r<0:
            return k

def PsiPowLaw(x):
    #print PlPk
    rval = 0
    for k in PlPk:
        rval += PlPk[k]*x**k
    return rval

def DPsiPowLaw(x):
    rval = 0
    for k in PlPk:
        rval += k*PlPk[k]*x**(k-1)
    return rval
#End of power law network properties.





def process_degree_distribution(N, Pk, color, Psi, DPsi, symbol, label, count):
    report_times = scipy.linspace(0,30,3000)
    sums = 0*report_times
    for cnt in range(count):
        G = generate_network(Pk, N)
        t, S, I, R = EoN.fast_SIR(G, tau, gamma, rho=rho)
        plt.plot(t, I*1./N, '-', color = color,
                                alpha = 0.1, linewidth=1)
        subsampled_I = EoN.subsample(report_times, t, I)
        sums += subsampled_I*1./N
    ave = sums/count
    plt.plot(report_times, ave, color = 'k')

    #Do EBCM
    N= G.order()#N is arbitrary, but included because our implementation of EBCM assumes N is given.
    t, S, I, R = EoN.EBCM_uniform_introduction(N, Psi, DPsi, tau, gamma, rho, tmin=0, tmax=10, tcount = 41)
    plt.plot(t, I/N, symbol, color = color, markeredgecolor='k', label=label)

    for cnt in range(3):  #do 3 highlighted simulations
        G = generate_network(Pk, N)
        t, S, I, R = EoN.fast_SIR(G, tau, gamma, rho=rho)
        plt.plot(t, I*1./N, '-', color = 'k', linewidth=0.1)




plt.figure(figsize=(8,4))



#Powerlaw
process_degree_distribution(N, PkPowLaw, colors[3], PsiPowLaw, DPsiPowLaw, 'd', r'Truncated Power Law', count)

#Poisson
process_degree_distribution(N, PkPoisson, colors[0], PsiPoisson, DPsiPoisson, '^', r'Erd\H{o}s--R\'{e}nyi', count)

#Homogeneous
process_degree_distribution(N, PkHomogeneous, colors[2], PsiHomogeneous, DPsiHomogeneous, 's', r'Homogeneous', count)

plt.xlabel(r'$t$', fontsize=12)
plt.ylabel(r'Proportion infected', fontsize=12)
plt.legend(loc = 'upper right', numpoints = 1)

plt.axis(xmax=10, xmin=0, ymin=0)
plt.savefig('fig1p2.pdf')
最佳答案
2023-3-27 22:26:40
根据报错信息,代码中引用了名为EoN的库,但是在本地环境中没有找到这个库。需要先安装该库才能运行代码。

可以使用pip工具安装EoN库,命令如下:
pip install EoN
如果当前环境有多个Python版本,需要注意确认pip对应的Python版本与当前使用的版本一致。

最佳答案

查看完整内容

根据报错信息,代码中引用了名为EoN的库,但是在本地环境中没有找到这个库。需要先安装该库才能运行代码。 可以使用pip工具安装EoN库,命令如下: 如果当前环境有多个Python版本,需要注意确认pip对应的Python版本与当前使用的版本一致。
想知道小甲鱼最近在做啥?请访问 -> ilovefishc.com
回复

使用道具 举报

发表于 2023-3-27 22:26:40 | 显示全部楼层    本楼为最佳答案   
根据报错信息,代码中引用了名为EoN的库,但是在本地环境中没有找到这个库。需要先安装该库才能运行代码。

可以使用pip工具安装EoN库,命令如下:
pip install EoN
如果当前环境有多个Python版本,需要注意确认pip对应的Python版本与当前使用的版本一致。
想知道小甲鱼最近在做啥?请访问 -> ilovefishc.com
回复

使用道具 举报

 楼主| 发表于 2023-3-27 22:27:19 | 显示全部楼层
第一份是EON报错了,第二份是scipy报错了
想知道小甲鱼最近在做啥?请访问 -> ilovefishc.com
回复

使用道具 举报

 楼主| 发表于 2023-3-27 22:28:08 | 显示全部楼层
两张报错图片,球球大佬救救
微信图片_20230327221937.png
微信图片_20230327221859.png
想知道小甲鱼最近在做啥?请访问 -> ilovefishc.com
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

小黑屋|手机版|Archiver|鱼C工作室 ( 粤ICP备18085999号-1 | 粤公网安备 44051102000585号)

GMT+8, 2024-12-28 02:17

Powered by Discuz! X3.4

© 2001-2023 Discuz! Team.

快速回复 返回顶部 返回列表