|
发表于 2023-4-5 17:47:37
|
显示全部楼层
这个是遗传算法的:
遗传算法是一种基于自然选择和遗传原理的全局优化搜索算法。它适用于解决一些较难的优化问题,如TSP问题。
遗传算法的基本思想是通过模拟自然界中的遗传和变异过程,在解空间中搜索全局最优解。以下是使用遗传算法解决TSP问题的基本步骤:
- 随机生成初始种群:创建一定数量的随机路径(称为染色体),每个路径表示一个城市访问顺序的解决方案。
- 评估适应度:计算每个染色体的适应度值,即路径长度的倒数。适应度值越高,表示解决方案越优秀。
- 选择:按照某种选择策略(如轮盘赌、锦标赛选择等)从当前种群中选取一定数量的染色体,作为下一代种群的父代。
- 交叉(或称为杂交、重组):根据设定的交叉概率,将父代染色体进行配对并交换部分基因,生成新的子代染色体。常用的交叉方法有顺序交叉、部分映射交叉(PMX)等。
- 变异:根据设定的变异概率,随机调整子代染色体的部分基因。变异可以引入新的基因特征,避免算法陷入局部最优解。常用的变异方法有交换变异、逆序变异等。
- 更新种群:将子代染色体替换原种群,形成新的种群。
- 终止条件:如果达到预设的迭代次数或找到满足要求的解,结束算法。否则,返回第2步,继续迭代。
遗传算法在TSP问题上表现较好,因为它能搜索解空间的较大范围,并以较高概率找到全局最优解。
然而,遗传算法的时间复杂度和空间复杂度较高,需要调整参数(如交叉概率、变异概率等)以获得最佳性能。
示例代码:
- import csv
- import random
- import math
- from typing import List, Tuple
- class City:
- def __init__(self, name: str, longitude: float, latitude: float):
- self.name = name
- self.longitude = longitude
- self.latitude = latitude
- def __repr__(self):
- return self.name
- def euclidean_distance(city1: City, city2: City) -> float:
- x_diff = city1.longitude - city2.longitude
- y_diff = city1.latitude - city2.latitude
- return math.sqrt(x_diff ** 2 + y_diff ** 2)
- def load_cities_from_csv(file_path: str) -> List[City]:
- cities = []
- with open(file_path, "r", encoding="utf-8") as file:
- csv_reader = csv.reader(file, delimiter=";")
- for row in csv_reader:
- city = City(row[0], float(row[1]), float(row[2]))
- cities.append(city)
- return cities
- def path_distance(path: List[City]) -> float:
- distance = sum(euclidean_distance(path[i - 1], path[i]) for i in range(1, len(path)))
- distance += euclidean_distance(path[-1], path[0]) # 最后一个城市返回到第一个城市
- return distance
- class GeneticAlgorithm:
- def __init__(
- self,
- cities: List[City],
- population_size: int = 100,
- generations: int = 1000,
- mutation_rate: float = 0.01,
- elite_size: int = 10
- ):
- self.cities = cities
- self.population_size = population_size
- self.generations = generations
- self.mutation_rate = mutation_rate
- self.elite_size = elite_size
- def create_population(self) -> List[List[City]]:
- return [random.sample(self.cities, len(self.cities)) for _ in range(self.population_size)]
- def fitness(self, path: List[City]) -> float:
- return 1 / path_distance(path)
- def selection(self, population: List[List[City]]) -> List[List[City]]:
- ranked_population = sorted(population, key=self.fitness, reverse=True)
- selected = ranked_population[:self.elite_size]
- weights = [self.fitness(path) for path in ranked_population]
- selected.extend(random.choices(ranked_population, weights, k=self.population_size - self.elite_size))
- return selected
- def crossover(self, parent1: List[City], parent2: List[City]) -> List[City]:
- start, end = random.sample(range(len(parent1)), 2)
- start, end = min(start, end), max(start, end)
- child = [None] * len(parent1)
- child[start:end] = parent1[start:end]
- for city in parent2[end:] + parent2[:end]:
- if city not in child:
- index = child.index(None)
- child[index] = city
- return child
- def mutate(self, path: List[City]) -> List[City]:
- for i in range(len(path)):
- if random.random() < self.mutation_rate:
- j = random.randint(0, len(path) - 1)
- path[i], path[j] = path[j], path[i]
- return path
- def evolve(self, population: List[List[City]]) -> List[List[City]]:
- selected = self.selection(population)
- children = []
- for i in range(0, len(selected) - 1, 2):
- child1 = self.crossover(selected[i], selected[i + 1])
- child2 = self.crossover(selected[i + 1], selected[i])
- children.extend([child1, child2])
-
- if len(children) < len(population):
- children.append(selected[-1])
- return [self.mutate(child) for child in children]
- def run(self) -> Tuple[List[City], float]:
- population = self.create_population()
- for _ in range(self.generations):
- population = self.evolve(population)
- best_path = max(population, key=self.fitness)
- return best_path, path_distance(best_path)
-
- # 读取城市数据
- cities = load_cities_from_csv("china.csv")
- # 运行遗传算法
- ga = GeneticAlgorithm(cities, population_size=100, generations=1000, mutation_rate=0.01, elite_size=10)
- best_path, distance = ga.run()
- #输出结果
- print("最短路径为:")
- for city in best_path:
- print(f"{city.name} ({city.longitude}, {city.latitude})")
- print(f"总距离:{distance}")
复制代码
这个示例代码实现了一个针对china.csv数据的遗传算法。它首先从csv文件中读取城市数据,然后运行遗传算法以寻找最佳路径。在运行结束时,它将输出所找到的最佳路径以及其总距离。
请注意,由于遗传算法是一种随机算法,每次运行时找到的解可能略有不同。为了获得更好的结果,可以尝试增加种群大小、代数或改变其他参数。
|
|