以下是我根据您提供的二维卷积层结构代码进行修改和完善后的完整代码。import torchimport torch.nn as nnclass ConvolutionalLayer(nn.Module): def __init__(self, in_channels): super(ConvolutionalLayer, self).__init__() self.conv = nn.Conv2d(in_channels, 1, kernel_size=1, stride=1, padding=0) def forward(self, x): return self.conv(x)# 设置输入通道数in_channels = 3# 初始化卷积层conv_layer = ConvolutionalLayer(in_channels)# 创建输入张量batch_size = 10input_height = 32input_width = 32input_tensor = torch.randn(batch_size, in_channels, input_height, input_width)# 进行前向传播output_tensor = conv_layer(input_tensor)print("输入张量形状:", input_tensor.shape)print("输出张量形状:", output_tensor.shape)
希望这段代码能帮助到您!如果您有其他问题,请随时提问。
如果回答对你有帮助,请给我一个最佳答案!
|