首先,我们需要先读取输入的m和n,并创建一个大小为m×n的二维数组来表示图像。m, n = map(int, input().split())image = [[0] * n for _ in range(m)]
接下来,我们需要读取每个像素点的灰度值,并将其存储到相应的位置上。for i in range(m): row = list(map(int, input().split())) for j in range(n): image[i][j] = row[j]
然后,我们需要依次执行给定的操作。对于每个操作,我们可以使用循环遍历图像的每个像素点,并根据操作类型进行相应的处理。operations = input().strip()for op in operations: if op == 'A': # 顺时针旋转90度 rotated = [[0] * m for _ in range(n)] for i in range(m): for j in range(n): rotated[j][m - i - 1] = image[i][j] image = rotated m, n = n, m elif op == 'B': # 逆时针旋转90度 rotated = [[0] * m for _ in range(n)] for i in range(m): for j in range(n): rotated[n - j - 1][i] = image[i][j] image = rotated m, n = n, m elif op == 'C': # 左右翻转 flipped = [[0] * n for _ in range(m)] for i in range(m): for j in range(n): flipped[i][n - j - 1] = image[i][j] image = flipped elif op == 'D': # 上下翻转 flipped = [[0] * n for _ in range(m)] for i in range(m): for j in range(n): flipped[m - i - 1][j] = image[i][j] image = flipped
最后,我们需要输出最终图像的灰度值。for i in range(m): for j in range(n): print(image[i][j], end=' ') print()
完整代码如下:m, n = map(int, input().split())image = [[0] * n for _ in range(m)]for i in range(m): row = list(map(int, input().split())) for j in range(n): image[i][j] = row[j]operations = input().strip()for op in operations: if op == 'A': rotated = [[0] * m for _ in range(n)] for i in range(m): for j in range(n): rotated[j][m - i - 1] = image[i][j] image = rotated m, n = n, m elif op == 'B': rotated = [[0] * m for _ in range(n)] for i in range(m): for j in range(n): rotated[n - j - 1][i] = image[i][j] image = rotated m, n = n, m elif op == 'C': flipped = [[0] * n for _ in range(m)] for i in range(m): for j in range(n): flipped[i][n - j - 1] = image[i][j] image = flipped elif op == 'D': flipped = [[0] * n for _ in range(m)] for i in range(m): for j in range(n): flipped[m - i - 1][j] = image[i][j] image = flippedfor i in range(m): for j in range(n): print(image[i][j], end=' ') print()
希望我对问题的解答能够帮到你。如果你还有其他问题,请随时提问。
以上回复来自 -- ChatGPT(FishC官方接口),如未能正确解答您的问题,请继续追问。 |