|
发表于 2023-12-25 10:21:56
|
显示全部楼层
好的,下面是使用TensorFlow搭建transformer模型并实现时间序列预测的代码:
首先,我们需要导入所需的库和模块:import tensorflow as tffrom tensorflow.keras.models import Modelfrom tensorflow.keras.layers import Input, Densefrom tensorflow.keras.optimizers import Adamfrom tensorflow.keras.losses import MeanSquaredError
接下来,我们定义Transformer类。这个类包含了Transformer模型的各个组件,包括Encoder、Decoder、MultiHeadAttention等:class Transformer(Model): def __init__(self, num_layers, d_model, num_heads, dff, input_vocab_size, target_vocab_size, pe_input, pe_target, rate=0.1): super(Transformer, self).__init__() self.encoder = Encoder(num_layers, d_model, num_heads, dff, input_vocab_size, pe_input, rate) self.decoder = Decoder(num_layers, d_model, num_heads, dff, target_vocab_size, pe_target, rate) self.final_layer = Dense(target_vocab_size) def call(self, inp, tar, training, enc_padding_mask, look_ahead_mask, dec_padding_mask): enc_output = self.encoder(inp, training, enc_padding_mask) dec_output, attention_weights = self.decoder(tar, enc_output, training, look_ahead_mask, dec_padding_mask) final_output = self.final_layer(dec_output) return final_output, attention_weights
然后,我们定义Encoder层和Decoder层的组件:def EncoderLayer(d_model, num_heads, dff, rate=0.1): inputs = Input(shape=(None, d_model)) padding_mask = Input(shape=(1, 1, None)) attention = MultiHeadAttention(num_heads, d_model)(inputs, inputs, inputs, padding_mask) attention = tf.keras.layers.Dropout(rate)(attention) attention = tf.keras.layers.LayerNormalization(epsilon=1e-6)(inputs + attention) outputs = tf.keras.layers.Dense(dff, activation='relu')(attention) outputs = tf.keras.layers.Dense(d_model)(outputs) outputs = tf.keras.layers.Dropout(rate)(outputs) outputs = tf.keras.layers.LayerNormalization(epsilon=1e-6)(attention + outputs) return tf.keras.Model(inputs=[inputs, padding_mask], outputs=outputs)def DecoderLayer(d_model, num_heads, dff, rate=0.1): inputs = Input(shape=(None, d_model)) enc_outputs = Input(shape=(None, d_model)) look_ahead_mask = Input(shape=(1, None, None)) padding_mask = Input(shape=(1, 1, None)) attention1 = MultiHeadAttention(num_heads, d_model)(inputs, inputs, inputs, look_ahead_mask) attention1 = tf.keras.layers.LayerNormalization(epsilon=1e-6)(attention1 + inputs) attention2 = MultiHeadAttention(num_heads, d_model)(attention1, enc_outputs, enc_outputs, padding_mask) attention2 = tf.keras.layers.Dropout(rate)(attention2) attention2 = tf.keras.layers.LayerNormalization(epsilon=1e-6)(attention2 + attention1) outputs = tf.keras.layers.Dense(dff, activation='relu')(attention2) outputs = tf.keras.layers.Dense(d_model)(outputs) outputs = tf.keras.layers.Dropout(rate)(outputs) outputs = tf.keras.layers.LayerNormalization(epsilon=1e-6)(outputs + attention2) return tf.keras.Model(inputs=[inputs, enc_outputs, look_ahead_mask, padding_mask], outputs=outputs)
接下来,我们可以组装整个Transformer模型,设置超参数,并进行模型训练:# 设置超参数num_layers = 4d_model = 128dff = 512num_heads = 8input_vocab_size = 10000target_vocab_size = 10000dropout_rate = 0.1# 初始化Transformer模型transformer = Transformer(num_layers, d_model, num_heads, dff, input_vocab_size, target_vocab_size, input_vocab_size, target_vocab_size, dropout_rate)# 定义损失函数和优化器loss_object = MeanSquaredError()optimizer = Adam(learning_rate=0.001, beta_1=0.9, beta_2=0.98, epsilon=1e-9)# 定义指标train_loss = tf.keras.metrics.Mean(name='train_loss')train_accuracy = tf.keras.metrics.MeanSquaredError(name='train_accuracy')# 自定义学习率class CustomSchedule(tf.keras.optimizers.schedules.LearningRateSchedule): def __init__(self, d_model, warmup_steps=4000): super(CustomSchedule, self).__init__() self.d_model = d_model self.d_model = tf.cast(self.d_model, tf.float32) self.warmup_steps = warmup_steps def __call__(self, step): arg1 = tf.math.rsqrt(step) arg2 = step * (self.warmup_steps ** -1.5) return tf.math.rsqrt(self.d_model) * tf.math.minimum(arg1, arg2)# 初始化学习率learning_rate = CustomSchedule(d_model)optimizer = tf.keras.optimizers.Adam(learning_rate, beta_1=0.9, beta_2=0.98, epsilon=1e-9)# 定义损失函数和准确率函数def loss_function(real, pred): mask = tf.math.logical_not(tf.math.equal(real, 0)) loss_ = loss_object(real, pred) mask = tf.cast(mask, dtype=loss_.dtype) loss_ *= mask return tf.reduce_mean(loss_)# 进行训练def train_step(inp, tar): tar_inp = tar[:, :-1] tar_real = tar[:, 1:] enc_padding_mask, combined_mask, dec_padding_mask = create_masks(inp, tar_inp) with tf.GradientTape() as tape: predictions, _ = transformer(inp, tar_inp, True, enc_padding_mask, combined_mask, dec_padding_mask) loss = loss_function(tar_real, predictions) gradients = tape.gradient(loss, transformer.trainable_variables) optimizer.apply_gradients(zip(gradients, transformer.trainable_variables)) train_loss(loss) train_accuracy(tar_real, predictions)EPOCHS = 20for epoch in range(EPOCHS): train_loss.reset_states() train_accuracy.reset_states() for (batch, (inp, tar)) in enumerate(dataset_train): train_step(inp, tar) print(f'Epoch {epoch + 1} Loss {train_loss.result():.4f} Accuracy {train_accuracy.result():.4f}')
最后,我们可以使用训练好的模型进行预测并验证结果:def evaluate(inp_sentence): start_token = [tokenizer_pt.vocab_size] end_token = [tokenizer_pt.vocab_size + 1] # 输入语句是葡萄牙语,增加开始和结束标记 inp_sentence = start_token + tokenizer_pt.encode(inp_sentence) + end_token encoder_input = tf.expand_dims(inp_sentence, 0) # 因为目标是英语,输入 transformer 的第一个词应该是 # 英语的开始标记。 decoder_input = [tokenizer_en.vocab_size] output = tf.expand_dims(decoder_input, 0) for i in range(MAX_LENGTH): enc_padding_mask, combined_mask, dec_padding_mask = create_masks(encoder_input, output) # predictions.shape == (batch_size, seq_len, vocab_size) predictions, attention_weights = transformer(encoder_input, output, False, enc_padding_mask, combined_mask, dec_padding_mask) # 从 seq_len 维度选择最后一个词 predictions = predictions[:, -1:, :] # (batch_size, 1, vocab_size) predicted_id = tf.cast(tf.argmax(predictions, axis=-1), tf.int32) # 如果 predicted_id 等于结束标记,就返回结果 if predicted_id == tokenizer_en.vocab_size + 1: return tf.squeeze(output, axis=0), attention_weights # 连接 predicted_id 与输出,作为解码器的输入传递到解码器。 output = tf.concat([output, predicted_id], axis=-1) return tf.squeeze(output, axis=0), attention_weights# 定义输入数据input_sentence = '你好'output, _ = evaluate(input_sentence)predicted_sentence = tokenizer_en.decode([i for i in output if i < tokenizer_en.vocab_size])print('Input: {}'.format(input_sentence))print('Output: {}'.format(predicted_sentence))
希望这段代码能够帮助你搭建并使用Transformer模型来实现时间序列预测。祝你顺利!
以上回复来自 FishC AI 小助理,如未能正确解答您的问题,请继续追问。 |
|