|
发表于 2023-12-25 10:21:56
|
显示全部楼层
好的,下面是使用TensorFlow搭建transformer模型并实现时间序列预测的代码:
首先,我们需要导入所需的库和模块:
- import tensorflow as tf
- from tensorflow.keras.models import Model
- from tensorflow.keras.layers import Input, Dense
- from tensorflow.keras.optimizers import Adam
- from tensorflow.keras.losses import MeanSquaredError
复制代码
接下来,我们定义Transformer类。这个类包含了Transformer模型的各个组件,包括Encoder、Decoder、MultiHeadAttention等:
- class Transformer(Model):
- def __init__(self, num_layers, d_model, num_heads, dff, input_vocab_size, target_vocab_size, pe_input, pe_target, rate=0.1):
- super(Transformer, self).__init__()
- self.encoder = Encoder(num_layers, d_model, num_heads, dff, input_vocab_size, pe_input, rate)
- self.decoder = Decoder(num_layers, d_model, num_heads, dff, target_vocab_size, pe_target, rate)
- self.final_layer = Dense(target_vocab_size)
- def call(self, inp, tar, training, enc_padding_mask, look_ahead_mask, dec_padding_mask):
- enc_output = self.encoder(inp, training, enc_padding_mask)
- dec_output, attention_weights = self.decoder(tar, enc_output, training, look_ahead_mask, dec_padding_mask)
- final_output = self.final_layer(dec_output)
- return final_output, attention_weights
复制代码
然后,我们定义Encoder层和Decoder层的组件:
- def EncoderLayer(d_model, num_heads, dff, rate=0.1):
- inputs = Input(shape=(None, d_model))
- padding_mask = Input(shape=(1, 1, None))
- attention = MultiHeadAttention(num_heads, d_model)(inputs, inputs, inputs, padding_mask)
- attention = tf.keras.layers.Dropout(rate)(attention)
- attention = tf.keras.layers.LayerNormalization(epsilon=1e-6)(inputs + attention)
- outputs = tf.keras.layers.Dense(dff, activation='relu')(attention)
- outputs = tf.keras.layers.Dense(d_model)(outputs)
- outputs = tf.keras.layers.Dropout(rate)(outputs)
- outputs = tf.keras.layers.LayerNormalization(epsilon=1e-6)(attention + outputs)
- return tf.keras.Model(inputs=[inputs, padding_mask], outputs=outputs)
- def DecoderLayer(d_model, num_heads, dff, rate=0.1):
- inputs = Input(shape=(None, d_model))
- enc_outputs = Input(shape=(None, d_model))
- look_ahead_mask = Input(shape=(1, None, None))
- padding_mask = Input(shape=(1, 1, None))
- attention1 = MultiHeadAttention(num_heads, d_model)(inputs, inputs, inputs, look_ahead_mask)
- attention1 = tf.keras.layers.LayerNormalization(epsilon=1e-6)(attention1 + inputs)
- attention2 = MultiHeadAttention(num_heads, d_model)(attention1, enc_outputs, enc_outputs, padding_mask)
- attention2 = tf.keras.layers.Dropout(rate)(attention2)
- attention2 = tf.keras.layers.LayerNormalization(epsilon=1e-6)(attention2 + attention1)
- outputs = tf.keras.layers.Dense(dff, activation='relu')(attention2)
- outputs = tf.keras.layers.Dense(d_model)(outputs)
- outputs = tf.keras.layers.Dropout(rate)(outputs)
- outputs = tf.keras.layers.LayerNormalization(epsilon=1e-6)(outputs + attention2)
- return tf.keras.Model(inputs=[inputs, enc_outputs, look_ahead_mask, padding_mask], outputs=outputs)
复制代码
接下来,我们可以组装整个Transformer模型,设置超参数,并进行模型训练:
- # 设置超参数
- num_layers = 4
- d_model = 128
- dff = 512
- num_heads = 8
- input_vocab_size = 10000
- target_vocab_size = 10000
- dropout_rate = 0.1
- # 初始化Transformer模型
- transformer = Transformer(num_layers, d_model, num_heads, dff, input_vocab_size, target_vocab_size, input_vocab_size, target_vocab_size, dropout_rate)
- # 定义损失函数和优化器
- loss_object = MeanSquaredError()
- optimizer = Adam(learning_rate=0.001, beta_1=0.9, beta_2=0.98, epsilon=1e-9)
- # 定义指标
- train_loss = tf.keras.metrics.Mean(name='train_loss')
- train_accuracy = tf.keras.metrics.MeanSquaredError(name='train_accuracy')
- # 自定义学习率
- class CustomSchedule(tf.keras.optimizers.schedules.LearningRateSchedule):
- def __init__(self, d_model, warmup_steps=4000):
- super(CustomSchedule, self).__init__()
- self.d_model = d_model
- self.d_model = tf.cast(self.d_model, tf.float32)
- self.warmup_steps = warmup_steps
- def __call__(self, step):
- arg1 = tf.math.rsqrt(step)
- arg2 = step * (self.warmup_steps ** -1.5)
- return tf.math.rsqrt(self.d_model) * tf.math.minimum(arg1, arg2)
- # 初始化学习率
- learning_rate = CustomSchedule(d_model)
- optimizer = tf.keras.optimizers.Adam(learning_rate, beta_1=0.9, beta_2=0.98, epsilon=1e-9)
- # 定义损失函数和准确率函数
- def loss_function(real, pred):
- mask = tf.math.logical_not(tf.math.equal(real, 0))
- loss_ = loss_object(real, pred)
- mask = tf.cast(mask, dtype=loss_.dtype)
- loss_ *= mask
- return tf.reduce_mean(loss_)
- # 进行训练
- def train_step(inp, tar):
- tar_inp = tar[:, :-1]
- tar_real = tar[:, 1:]
- enc_padding_mask, combined_mask, dec_padding_mask = create_masks(inp, tar_inp)
- with tf.GradientTape() as tape:
- predictions, _ = transformer(inp, tar_inp, True, enc_padding_mask, combined_mask, dec_padding_mask)
- loss = loss_function(tar_real, predictions)
- gradients = tape.gradient(loss, transformer.trainable_variables)
- optimizer.apply_gradients(zip(gradients, transformer.trainable_variables))
- train_loss(loss)
- train_accuracy(tar_real, predictions)
- EPOCHS = 20
- for epoch in range(EPOCHS):
- train_loss.reset_states()
- train_accuracy.reset_states()
- for (batch, (inp, tar)) in enumerate(dataset_train):
- train_step(inp, tar)
- print(f'Epoch {epoch + 1} Loss {train_loss.result():.4f} Accuracy {train_accuracy.result():.4f}')
复制代码
最后,我们可以使用训练好的模型进行预测并验证结果:
- def evaluate(inp_sentence):
- start_token = [tokenizer_pt.vocab_size]
- end_token = [tokenizer_pt.vocab_size + 1]
- # 输入语句是葡萄牙语,增加开始和结束标记
- inp_sentence = start_token + tokenizer_pt.encode(inp_sentence) + end_token
- encoder_input = tf.expand_dims(inp_sentence, 0)
- # 因为目标是英语,输入 transformer 的第一个词应该是
- # 英语的开始标记。
- decoder_input = [tokenizer_en.vocab_size]
- output = tf.expand_dims(decoder_input, 0)
- for i in range(MAX_LENGTH):
- enc_padding_mask, combined_mask, dec_padding_mask = create_masks(encoder_input, output)
- # predictions.shape == (batch_size, seq_len, vocab_size)
- predictions, attention_weights = transformer(encoder_input,
- output,
- False,
- enc_padding_mask,
- combined_mask,
- dec_padding_mask)
- # 从 seq_len 维度选择最后一个词
- predictions = predictions[:, -1:, :] # (batch_size, 1, vocab_size)
- predicted_id = tf.cast(tf.argmax(predictions, axis=-1), tf.int32)
- # 如果 predicted_id 等于结束标记,就返回结果
- if predicted_id == tokenizer_en.vocab_size + 1:
- return tf.squeeze(output, axis=0), attention_weights
- # 连接 predicted_id 与输出,作为解码器的输入传递到解码器。
- output = tf.concat([output, predicted_id], axis=-1)
- return tf.squeeze(output, axis=0), attention_weights
- # 定义输入数据
- input_sentence = '你好'
- output, _ = evaluate(input_sentence)
- predicted_sentence = tokenizer_en.decode([i for i in output if i < tokenizer_en.vocab_size])
- print('Input: {}'.format(input_sentence))
- print('Output: {}'.format(predicted_sentence))
复制代码
希望这段代码能够帮助你搭建并使用Transformer模型来实现时间序列预测。祝你顺利!
以上回复来自 FishC AI 小助理,如未能正确解答您的问题,请继续追问。 |
|