|
马上注册,结交更多好友,享用更多功能^_^
您需要 登录 才可以下载或查看,没有账号?立即注册
x
学院教务处需要设计一款教学系统,该系统可以实现学生成绩的上传、修改和查询,并可以形成班级学生的数据分析报表,包括课程最高分,最低分,不及格人数,优秀率,合格率等信息,能通过数据可视化更直观展现班级学情状况,并将数据报表保存为CSV格式。基本要求如下:
(1)针对项目需求,设计解决方案。
(2)通过Numpy或Pandas随机生成班级原始数据CSV文件,原始数据学生人数不少于100条,课程信息不少于3门,成绩分布0-100分。
(3)能按需上传,修改,查询学生信息。
(4)能实现数据的可视化。
(5)将分析报表保存为CSV格式。
针对这个需求,你可以按照以下步骤设计解决方案:
1. 创建一个学生类,包含学生的姓名、学号、课程成绩等信息。
2. 创建一个班级类,包含班级的名称、学生列表等信息。该类应该提供方法来添加学生、修改学生成绩、查询学生成绩等功能。
3. 使用Numpy或Pandas库,随机生成班级的原始数据,并将数据保存为CSV文件。
4. 创建一个数据分析类,包含对班级成绩进行统计和分析的方法,如计算最高分、最低分、不及格人数、优秀率、合格率等。
5. 使用Matplotlib库进行数据可视化,将班级成绩分布等信息以图表形式展示,例如直方图、饼图等。
6. 将数据分析报表保存为CSV格式,使用Python的CSV模块来实现文件的读写操作。
下面是一个简单的示例代码,帮助你开始实现这个教学系统:
- import random
- import numpy as np
- import pandas as pd
- import matplotlib.pyplot as plt
- class Student:
- def __init__(self, name, student_id):
- self.name = name
- self.student_id = student_id
- self.scores = {}
- def set_score(self, course, score):
- self.scores[course] = score
- def get_score(self, course):
- return self.scores.get(course)
- def get_all_scores(self):
- return self.scores
- class Class:
- def __init__(self, name):
- self.name = name
- self.students = []
- def add_student(self, student):
- self.students.append(student)
- def get_student(self, student_id):
- for student in self.students:
- if student.student_id == student_id:
- return student
- return None
- class DataAnalysis:
- def __init__(self, class_obj):
- self.class_obj = class_obj
-
- def calculate_highest_score(self, course):
- highest_score = -1
- for student in self.class_obj.students:
- score = student.get_score(course)
- if score is not None and score > highest_score:
- highest_score = score
- return highest_score
- def calculate_lowest_score(self, course):
- lowest_score = 101
- for student in self.class_obj.students:
- score = student.get_score(course)
- if score is not None and score < lowest_score:
- lowest_score = score
- return lowest_score
- def calculate_failed_students(self, course):
- count = 0
- for student in self.class_obj.students:
- score = student.get_score(course)
- if score is not None and score < 60:
- count += 1
- return count
- def calculate_excellent_rate(self, course):
- count = 0
- for student in self.class_obj.students:
- score = student.get_score(course)
- if score is not None and score >= 90:
- count += 1
- return count / len(self.class_obj.students) * 100
- def calculate_pass_rate(self, course):
- count = 0
- for student in self.class_obj.students:
- score = student.get_score(course)
- if score is not None and score >= 60:
- count += 1
- return count / len(self.class_obj.students) * 100
- def data_visualization(self, course):
- scores = []
- for student in self.class_obj.students:
- score = student.get_score(course)
- if score is not None:
- scores.append(score)
- plt.hist(scores, bins=10, range=(0, 100))
- plt.title(f"Distribution of Scores for {course}")
- plt.xlabel("Score")
- plt.ylabel("Number of Students")
- plt.show()
- def save_report_as_csv(self, filename):
- data = []
- header = ["Name", "Student ID"]
- for student in self.class_obj.students:
- header += list(student.get_all_scores().keys())
- break
- data.append(header)
- for student in self.class_obj.students:
- row = [student.name, student.student_id]
- for score in student.get_all_scores().values():
- row.append(score)
- data.append(row)
- df = pd.DataFrame(data)
- df.to_csv(filename, index=False)
- # 随机生成班级的原始数据
- courses = ["Math", "English", "Python"]
- class_obj = Class("Class A")
- for i in range(1, 101):
- name = f"Student{i}"
- student_id = f"S{i}"
- student = Student(name, student_id)
- for course in courses:
- score = random.randint(0, 100)
- student.set_score(course, score)
- class_obj.add_student(student)
- # 查询学生成绩
- student = class_obj.get_student("S1")
- if student is not None:
- score = student.get_score("Math")
- print(f"The score of {student.name} in Math is {score}")
- # 修改学生成绩
- student = class_obj.get_student("S1")
- if student is not None:
- student.set_score("Math", 90)
- # 进行数据分析和可视化
- data_analysis = DataAnalysis(class_obj)
- highest_score_math = data_analysis.calculate_highest_score("Math")
- lowest_score_math = data_analysis.calculate_lowest_score("Math")
- failed_students_math = data_analysis.calculate_failed_students("Math")
- excellent_rate_english = data_analysis.calculate_excellent_rate("English")
- pass_rate_python = data_analysis.calculate_pass_rate("Python")
- data_analysis.data_visualization("Math")
- # 保存数据报表
- data_analysis.save_report_as_csv("class_report.csv")
复制代码
这个示例代码演示了如何创建学生类、班级类,随机生成班级的原始数据,并进行学生成绩的上传、修改和查询。然后,使用数据分析类对班级成绩进行统计和分析,并通过Matplotlib库将数据可视化展示。最后,将分析报表保存为CSV格式。你可以根据实际需求进行修改和扩展。
以上回复来自 FishC AI 小助理,如未能正确解答您的问题,请继续追问。
|
|