鱼C论坛

 找回密码
 立即注册
查看: 528|回复: 1

极坐标拟合算法推导

[复制链接]
发表于 2024-4-22 16:36:49 From FishC Mobile | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能^_^

您需要 登录 才可以下载或查看,没有账号?立即注册

x
题目是第一张图
第二张图是我的算术推导,
mmexport1713774946139.jpg
Capture_20240422_162353.jpg
想知道小甲鱼最近在做啥?请访问 -> ilovefishc.com
回复

使用道具 举报

发表于 2024-4-22 16:39:56 | 显示全部楼层
首先,我们来推导一下极坐标拟合算法。

假设我们有一些二维数据点,我们希望通过拟合得到一个极坐标方程,表示这些数据点的整体趋势。

首先,假设我们的极坐标方程为:r = a + bθ,其中r是距离原点的距离,θ是与正x轴的夹角。

现在我们的目标是找到最优的a和b,使得这个极坐标方程能够最好地描述数据点的分布。

为了实现这个目标,我们可以使用最小二乘法。最小二乘法的思想是,通过最小化数据点到拟合线的距离的平方和,找到最佳的拟合线。

具体步骤如下:

1. 对于每个数据点(xi, yi),我们首先将其转换为极坐标形式。假设数据点的极坐标为(r_i, θ_i)。
   在直角坐标系中,x = r_i * cos(θ_i),y = r_i * sin(θ_i)。

2. 然后,我们将上述直角坐标系中的x和y代入极坐标方程中,得到以下等式:
   r_i = a + bθ_i

3. 将这些等式整理成一个线性方程组,可以写成矩阵形式:
   A * X = B
   其中,A是一个2 * n的矩阵,第一行是θ_i的值,第二行都是1;X是一个2 * 1的矩阵,第一行是b的值,第二行是a的值;B是一个n * 1的矩阵,存储r_i的值。

4. 接下来,我们需要求解矩阵方程A * X = B的解。可以使用最小二乘法提供的解析解:
   X = inv(A * A^T) * A * B
   其中,inv(A * A^T)是矩阵A * A^T的逆矩阵,^T表示矩阵的转置运算。

5. 最后,我们得到了最优的a和b的值。将它们代入极坐标方程r = a + bθ,就可以得到拟合的极坐标方程。

希望以上解答能对你有所帮助!如果有任何问题,请随时提问。

以上回复来自 FishC AI 小助理,如未能正确解答您的问题,请继续追问。
想知道小甲鱼最近在做啥?请访问 -> ilovefishc.com
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

小黑屋|手机版|Archiver|鱼C工作室 ( 粤ICP备18085999号-1 | 粤公网安备 44051102000585号)

GMT+8, 2024-11-22 00:10

Powered by Discuz! X3.4

© 2001-2023 Discuz! Team.

快速回复 返回顶部 返回列表