|

楼主 |
发表于 2024-10-29 11:34:26
|
显示全部楼层
- #使用dnn模型(k折交叉验证)
- import torch
- import torch.nn as nn
- from torch.utils import data
- from torch.utils.data import Dataset,DataLoader
- from torch import optim
- #定义神经网络模型
- class SimpleNN(nn.Module):
- def __init__(self):
- super(SimpleNN,self).__init__()
- self.hidden_layer1 = nn.Linear(154,1024)
- self.hidden_layer2 = nn.Linear(1024,1024)
- self.hidden_layer3 = nn.Linear(1024,256)
- #self.hidden_layer4 = nn.Linear(1024,1024)
- self.output_layer = nn.Linear(256,1)
- self.dropout = nn.Dropout(p=0.2)
- nn.init.xavier_uniform_(self.hidden_layer1.weight)
- nn.init.xavier_uniform_(self.hidden_layer2.weight)
- nn.init.xavier_uniform_(self.hidden_layer3.weight)
- #nn.init.xavier_uniform_(self.hidden_layer4.weight)
- nn.init.xavier_uniform_(self.output_layer.weight)
- def forward(self,x):
- inputs = x
- layer1_out = torch.nn.functional.relu(self.hidden_layer1(inputs))
- layer1_out = self.dropout(layer1_out)
- layer2_out = torch.nn.functional.relu(self.hidden_layer2(layer1_out))
- layer2_out = self.dropout(layer2_out)
- layer3_out = torch.nn.functional.relu(self.hidden_layer3(layer2_out))
- layer3_out = self.dropout(layer3_out)
- #layer4_out = torch.nn.functional.gelu(self.hidden_layer4(layer3_out))
- #layer4_out = self.dropout(layer4_out)
- #output = torch.relu(self.output_layer(layer4_out))
- output = torch.relu(self.output_layer(layer3_out))
- return output
- # 设置超参数
- k = 5
- batch_size = 112
- num_epochs = 350
- weight_decay = 0.001
- #初始化模型和优化器
- dnn_model = SimpleNN().to(device) # 将模型移到GPU上
- optimizer = optim.Adam(dnn_model.parameters(),lr=0.0001,weight_decay=weight_decay) #定义优化器
- #k折交叉验证选取训练集与验证集
- def get_k_fold_data(k, i, X, y):
- assert k > 1
- fold_size = len(X) // k
- X_train, y_train = None, None
- for j in range(k):
- start = j * fold_size
- end = (j + 1) * fold_size
- if j == i:
- X_valid, y_valid = X.iloc[start:end], y.iloc[start:end]
- elif X_train is None:
- X_train, y_train = X.iloc[start:end], y.iloc[start:end]
- else:
- X_train = pd.concat([X_train, X.iloc[start:end]], ignore_index=True)
- y_train = pd.concat([y_train, y.iloc[start:end]], ignore_index=True)
- return X_train, y_train, X_valid, y_valid
- #初始化列表
- train_ls, valid_ls = [], []
- for i in range(k):
- X_train, y_train, X_valid, y_valid = get_k_fold_data(k, i, X, y)
- print(f'FOLD {i}')
- print('--------------------------------')
-
- # 将DataFrame数据转换为NumPy数组,然后再转换为PyTorch张量,并且移动到GPU上
- X_train = torch.tensor(X_train.astype(np.float32).values, dtype=torch.float32).to(device)
- y_train = torch.tensor(y_train.astype(np.float32).values, dtype=torch.float32).to(device)
- X_valid = torch.tensor(X_valid.astype(np.float32).values, dtype=torch.float32).to(device)
- y_valid = torch.tensor(y_valid.astype(np.float32).values, dtype=torch.float32).to(device)
-
-
- #创建数据集
- train_ds = data.TensorDataset(X_train, y_train)
- valid_ds = data.TensorDataset(X_valid, y_valid)
- # 获取一个数据迭代器
- train_iter = DataLoader(dataset=train_ds,batch_size=batch_size,shuffle=True,num_workers=0)#shuffle=True相当于sampler=RandomSampler(dataset)
- valid_iter = DataLoader(dataset=valid_ds,batch_size=batch_size,shuffle=True,num_workers=0)
-
- #开始迭代
- for epoch in range(num_epochs):
- train_loss = 0
- for tensor_x, tensor_y in train_iter:#训练集执行梯度更新
- tensor_x = tensor_x.float()
- tensor_y = tensor_y.float().reshape(-1, 1)
- optimizer.zero_grad() #梯度清零
- pre_train = dnn_model(tensor_x)
- train_l = MSLE_loss(pre_train, tensor_y) #损失应避免与全局变量loss重名
- train_l.backward()#前向传播
- optimizer.step()#梯度下降
- train_loss += train_l.item() * len(tensor_x)
-
- train_loss /= len(train_ds) #每次迭代平均损失
-
-
- if epoch % 50 == 0:
- print('Loss: {} Epoch:{}'.format(train_loss, epoch))
-
-
-
- with torch.no_grad():
- valid_loss = 0
-
- for tensor_x, tensor_y in valid_iter:
- tensor_x = tensor_x.float()
- tensor_y = tensor_y.float().reshape(-1, 1)
- pre_valid = dnn_model(tensor_x)
- valid_l = MSLE_loss(pre_valid, tensor_y)
- valid_loss += valid_l.item() * len(tensor_x)
-
- valid_loss /= len(valid_ds)
-
-
- if epoch % 50 == 0:
- print('Valid Loss: {} Epoch:{}'.format(valid_loss, epoch))
-
- if i == 0:
- d2l.plot(list(range(1, num_epochs + 1)), [train_loss, valid_loss],
- xlabel='epoch', ylabel='rmse', xlim=[1, num_epochs],
- legend=['train', 'valid'], yscale='log')
- #将每折的损失添加到列表中
- train_ls.append(train_loss)
- valid_ls.append(valid_loss)
-
- print('Training Ended')
- print('Train Average Loss: {} Valid Average Loss: {}'.format(np.mean(train_ls),np.mean(valid_ls)))
复制代码
绘制图像时报错- ---------------------------------------------------------------------------
- ValueError Traceback (most recent call last)
- Cell In[44], line 133
- 130 print('Valid Loss: {} Epoch:{}'.format(valid_loss, epoch))
- 132 if i == 0:
- --> 133 d2l.plot(list(range(1, num_epochs + 1)), [train_loss, valid_loss],
- 134 xlabel='epoch', ylabel='rmse', xlim=[1, num_epochs],
- 135 legend=['train', 'valid'], yscale='log')
- 136 #将每折的损失添加到列表中
- 137 train_ls.append(train_loss)
- Cell In[43], line 101, in plot(X, Y, xlabel, ylabel, legend, xlim, ylim, xscale, yscale, fmts, figsize, axes)
- 99 for x, y, fmt in zip(X, Y, fmts):
- 100 if len(x):
- --> 101 axes.plot(x, y, fmt)
- 102 else:
- 103 axes.plot(y, fmt)
- File /opt/conda/lib/python3.10/site-packages/matplotlib/axes/_axes.py:1688, in Axes.plot(self, scalex, scaley, data, *args, **kwargs)
- 1445 """
- 1446 Plot y versus x as lines and/or markers.
- 1447
- (...)
- 1685 (``'green'``) or hex strings (``'#008000'``).
- 1686 """
- 1687 kwargs = cbook.normalize_kwargs(kwargs, mlines.Line2D)
- -> 1688 lines = [*self._get_lines(*args, data=data, **kwargs)]
- 1689 for line in lines:
- 1690 self.add_line(line)
- File /opt/conda/lib/python3.10/site-packages/matplotlib/axes/_base.py:311, in _process_plot_var_args.__call__(self, data, *args, **kwargs)
- 309 this += args[0],
- 310 args = args[1:]
- --> 311 yield from self._plot_args(
- 312 this, kwargs, ambiguous_fmt_datakey=ambiguous_fmt_datakey)
- File /opt/conda/lib/python3.10/site-packages/matplotlib/axes/_base.py:504, in _process_plot_var_args._plot_args(self, tup, kwargs, return_kwargs, ambiguous_fmt_datakey)
- 501 self.axes.yaxis.update_units(y)
- 503 if x.shape[0] != y.shape[0]:
- --> 504 raise ValueError(f"x and y must have same first dimension, but "
- 505 f"have shapes {x.shape} and {y.shape}")
- 506 if x.ndim > 2 or y.ndim > 2:
- 507 raise ValueError(f"x and y can be no greater than 2D, but have "
- 508 f"shapes {x.shape} and {y.shape}")
- ValueError: x and y must have same first dimension, but have shapes (350,) and (2,)
复制代码
如何修改 |
|