马上注册,结交更多好友,享用更多功能^_^
您需要 登录 才可以下载或查看,没有账号?立即注册
x
#include<stdio.h>
#include<stdlib.h>
#define EH 0 /*等高*/
#define LH 1 /*左高*/
#define RH -1 /*右高*/
typedef int ElemType; /*数据类型*/
typedef struct BiTree{
ElemType data; /*数据元素*/
int BF; /*平衡因子*/
struct BiTree *lchild,*rchild; /*左右子女指针*/
}*Bitree,BitreeNode;
int InsertAVL(Bitree *T,ElemType e,bool *taller);
void LeftBalance(Bitree *T);
void RightBalance(Bitree *T);
void R_Rotate(Bitree *T);
void L_Rotate(Bitree *T);
bool *taller=(bool*)malloc(sizeof(bool));
int main(void)
{
int data;
Bitree T=NULL;
while(1)
{
printf("enter the number(zero to exit):");
scanf("%d",&data);
if(0==data)break;
InsertAVL(&T,data,taller);
}
return 0;
}
/*若在平衡的二叉排序树T 中不存在和e 有相同关键码的结点,则插入一个数据元素为e 的*/
/*新结点,并反回1,否则反回0。若因插入而使二叉排序树失去平衡,则作平衡旋转处理,*/
/*布尔型变量taller 反映T 长高与否*/
int InsertAVL(Bitree *T,ElemType e,bool *taller)
{
if(!*T) /*插入新结点,树“长高”,置taller 为TURE*/
{
(*T)=(Bitree)malloc(sizeof(BitreeNode));
(*T)->data = e;
(*T)->lchild = (*T)->rchild = NULL;
(*T)->BF = EH;
*taller = true;
}
else
{
if(e==(*T)->data) /*树中存在和e 有相同关键码的结点,不插入*/
{
*taller = false;
return 0;
}
if(e<(*T)->data)
{
if(!InsertAVL(&(*T)->lchild,e,taller)) return 0; /*未插入*/
if(*taller)
switch((*T)->BF)
{
case EH : /*原本左、右子树等高,因左子树增高使树增高*/
(*T)->BF=LH;
*taller=true;
break;
case LH : /*原本左子树高,需作左平衡处理*/
LeftBalance(T);
*taller=false;
break;
case RH : /*原本右子树高,使左、右子树等高*/
(*T)->BF=EH;
*taller=false;
break;
}
}
else
{
if(!InsertAVL(&(*T)->rchild,e,taller)) return 0; /*未插入*/
if(*taller)
switch((*T)->BF)
{
case EH : /*原本左、右子树等高,因右子树增高使树增高*/
(*T)->BF=RH;
*taller=true;
break;
case LH : /*原本左子树高,使左、右子树等高*/
(*T)->BF=EH;
*taller=false;
break;
case RH : /*原本右子树高,需作右平衡处理*/
RightBalance(T);
*taller=false;
break;
}
}
}
return 1;
}
/*对以*p 指向的结点为根的子树,作左平衡旋转处理,处理之后,*p 指向的结点为子树的新根*/
void LeftBalance(Bitree *T)
{
Bitree L=(*T)->lchild,Lr; /*L 指向*T左子树根结点*/
switch(L->BF) /*检查L 平衡度,并作相应处理*/
{
case LH: /*新结点插在*p 左子树的左子树上,需作单右旋转处理*/
(*T)->BF=L->BF=EH;
R_Rotate(T);
break;
case EH: /*原本左、右子树等高,因左子树增高使树增高*/
(*T)->BF=LH; //这里的EH好像没有写的必要
*taller=true;
break;
case RH: /*新结点插在*T 左孩子的右子树上,需作先左后右双旋处理*/
Lr=L->rchild; /*Lr 指向*p 左孩子的右子树根结点*/
switch(Lr->BF) /*修正*T 及其左子树的平衡因子*/
{
case LH:
(*T)->BF = RH;
L->BF = EH;
break;
case EH:
(*T)->BF = L->BF= EH;
break;
case RH:
(*T)->BF = EH;
L->BF = LH;
break;
}
Lr->BF = EH;
L_Rotate(&L); /*对*T 的左子树作左旋转处理*/
R_Rotate(T); /*对*T 作右旋转处理*/
}
}
//这里和leftbalance一个道理,试着自己写一下
void RightBalance(Bitree *T)
{
Bitree Lr= (*T)->rchild,L;
switch(Lr->BF)
{
case EH:
*taller = true;
(*T)->BF = RH;
break;
case RH:
(*T)->BF=Lr->BF=EH;
L_Rotate(T);
break;
case LH:
L = Lr->lchild;
switch(L->BF)
{
case EH:
(*T)->BF=Lr->BF= EH;
break;
case RH:
Lr->BF= EH;
(*T)->BF = LH;
break;
case LH:
(*T)->BF = LH;
Lr->BF = EH;
break;
}
L->BF = EH;
R_Rotate(&Lr);
L_Rotate(T);
}
}
/*对以*T 指向的结点为根的子树,作右单旋转处理,处理之后,*T 指向的结点为子树的新根*/
void R_Rotate(Bitree *T)
{
Bitree L=(*T)->lchild; /*L 指向*T 左子树根结点*/
(*T)->lchild=L->rchild; /*L 的右子树挂接*T 的左子树*/
L->rchild=*T; *T=L; /* *L 指向新的根结点*/
}
/*对以*p 指向的结点为根的子树,作左单旋转处理,处理之后,*p 指向的结点为子树的新根*/
void L_Rotate(Bitree *T)
{
Bitree Lr=(*T)->rchild; /*Lr 指向*T 右子树根结点*/
(*T)->rchild=Lr->lchild; /*L 的左子树挂接*p 的右子树*/
Lr->lchild=*T;
*T=Lr; /* *L 指向新的根结点*/
}
|