|
马上注册,结交更多好友,享用更多功能^_^
您需要 登录 才可以下载或查看,没有账号?立即注册
x
Convergents of e
The square root of 2 can be written as an infinite continued fraction.
The infinite continued fraction can be written,
= [1;(2)], (2) indicates that 2 repeats ad infinitum. In a similar way,
= [4;(1,3,1,8)].
It turns out that the sequence of partial values of continued fractions for square roots provide the best rational approximations. Let us consider the convergents for
.
Hence the sequence of the first ten convergents for
are:
1, 3/2, 7/5, 17/12, 41/29, 99/70, 239/169, 577/408, 1393/985, 3363/2378, ...
What is most surprising is that the important mathematical constant,
e = [2; 1,2,1, 1,4,1, 1,6,1 , ... , 1,2k,1, ...].
The first ten terms in the sequence of convergents for e are:
2, 3, 8/3, 11/4, 19/7, 87/32, 106/39, 193/71, 1264/465, 1457/536, ...
The sum of digits in the numerator of the
convergent is 1+4+5+7=17.
Find the sum of digits in the numerator of the
convergent of the continued fraction for e.
题目:
2的平方根可以写作无限连分数:
这个无限连分数可以写作,
= [1;(2)], (2) 表示2无限循环出现。类似的,
= [4;(1,3,1,8)]。
事实证明平方根的连分数序列提供了最好的有理数近似值。让我们考虑
的收敛项:
因此
的收敛项中的前十项是:
1, 3/2, 7/5, 17/12, 41/29, 99/70, 239/169, 577/408, 1393/985, 3363/2378, ...
更令人惊奇的是一个重要的数学常数:
e = [2; 1,2,1, 1,4,1, 1,6,1 , ... , 1,2k,1, ...].
e 的收敛项序列中的前十项是:
2, 3, 8/3, 11/4, 19/7, 87/32, 106/39, 193/71, 1264/465, 1457/536, ...
其中第十项的分子各位数之和是 1+4+5+7=17。
找出 e 的收敛项序列中第 100 项的分子上各位之和。
|
|