马上注册,结交更多好友,享用更多功能^_^
您需要 登录 才可以下载或查看,没有账号?立即注册
x
Cube digit pairs
Each of the six faces on a cube has a different digit (0 to 9) written on it; the same is done to a second cube. By placing the two cubes side-by-side in different positions we can form a variety of 2-digit numbers.
For example, the square number 64 could be formed:
In fact, by carefully choosing the digits on both cubes it is possible to display all of the square numbers below one-hundred: 01, 04, 09, 16, 25, 36, 49, 64, and 81.
For example, one way this can be achieved is by placing {0, 5, 6, 7, 8, 9} on one cube and {1, 2, 3, 4, 8, 9} on the other cube.
However, for this problem we shall allow the 6 or 9 to be turned upside-down so that an arrangement like {0, 5, 6, 7, 8, 9} and {1, 2, 3, 4, 6, 7} allows for all nine square numbers to be displayed; otherwise it would be impossible to obtain 09.
In determining a distinct arrangement we are interested in the digits on each cube, not the order.
{1, 2, 3, 4, 5, 6} is equivalent to {3, 6, 4, 1, 2, 5}
{1, 2, 3, 4, 5, 6} is distinct from {1, 2, 3, 4, 5, 9}
But because we are allowing 6 and 9 to be reversed, the two distinct sets in the last example both represent the extended set {1, 2, 3, 4, 5, 6, 9} for the purpose of forming 2-digit numbers.
How many distinct arrangements of the two cubes allow for all of the square numbers to be displayed?
题目:
一个立方体的六个面上每个面都有一个 0-9 的数字,另一个立方体也如此。将两个立方体用不同的方式挨着放置,我们可以得到不同的两位数。
例如,平方数 64 可以如下表示:
如果仔细选择每个立方体面上的数字,我们可以表示出 100 以下所有的平方数: 01, 04, 09, 16, 25, 36, 49, 64, 和 81。
例如,能够达到这个目的的一种方式在一个立方体上标示 {0, 5, 6, 7, 8, 9},在另一个上标示 {1, 2, 3, 4, 8, 9}。
但是在这个问题中,我们允许 6 和 9 通过颠倒来互相表示。所以 {0, 5, 6, 7, 8, 9} 和 {1, 2, 3, 4, 6, 7} 就可以表示所有 9 个平方数,否则无法标示 09。
在判断不同的安排时,我们只对每个立方体上的数字感兴趣,而不考虑顺序。
{1, 2, 3, 4, 5, 6} 等价于 {3, 6, 4, 1, 2, 5}
{1, 2, 3, 4, 5, 6} 和 {1, 2, 3, 4, 5, 9} 则是不同的安排
但是由于我们允许 6 和 9 互相颠倒,所以上面的第二个例子的两个安排都可以表示 {1, 2, 3, 4, 5, 6, 9}。
要表示所有 9 个平方数的话,一共有多少种可行的安排?
|