|
马上注册,结交更多好友,享用更多功能^_^
您需要 登录 才可以下载或查看,没有账号?立即注册
x
本帖最后由 欧拉计划 于 2016-8-18 23:09 编辑
Special subset sums: meta-testing
Let S(A) represent the sum of elements in set A of size n. We shall call it a special sum set if for any two non-empty disjoint subsets, B and C, the following properties are true:
i. S(B) ≠ S(C); that is, sums of subsets cannot be equal.
ii. If B contains more elements than C then S(B) > S(C).
For this problem we shall assume that a given set contains n strictly increasing elements and it already satisfies the second rule.
Surprisingly, out of the 25 possible subset pairs that can be obtained from a set for which n = 4, only 1 of these pairs need to be tested for equality (first rule). Similarly, when n = 7, only 70 out of the 966 subset pairs need to be tested.
For n = 12, how many of the 261625 subset pairs that can be obtained need to be tested for equality?
NOTE: This problem is related to Problem 103 and Problem 105.
题目:
用 S(A) 表示一个包含 n 个元素的集合 A 的元素之和。如果该集合的任意两个非空不相交子集满足以下性质,我们将其称为一个特殊和集。
i. S(B) ≠ S(C);也就是两个子集的和不相等。
ii. 如果 B 中的元素数量多于 C,则 S(B) > S(C)。
对于这个问题我们认为给定的集合包含 n 个严格递增的元素,并且已经满足第二条规则。
令人惊奇的是,对于 n=4 的集合,在全部 25 种可能的子集对中,只有一对需要测试子集和是否相等(第一条规则)。类似的,对于 n=7,在全部 966 对子集对中,只有 70 对需要测试子集和是否相等。
对于 n=12,在全部 261625 个子集对中,有多少对需要测试子集和是否相等?
注意:该题目与题目 103,105 相关。
|
|