马上注册,结交更多好友,享用更多功能^_^
您需要 登录 才可以下载或查看,没有账号?立即注册
x
Primes with runs
Considering 4-digit primes containing repeated digits it is clear that they cannot all be the same: 1111 is divisible by 11, 2222 is divisible by 22, and so on. But there are nine 4-digit primes containing three ones:
1117, 1151, 1171, 1181, 1511, 1811, 2111, 4111, 8111
We shall say that M(n, d) represents the maximum number of repeated digits for an n-digit prime where d is the repeated digit, N(n, d) represents the number of such primes, and S(n, d) represents the sum of these primes.
So M(4, 1) = 3 is the maximum number of repeated digits for a 4-digit prime where one is the repeated digit, there are N(4, 1) = 9 such primes, and the sum of these primes is S(4, 1) = 22275. It turns out that for d = 0, it is only possible to have M(4, 0) = 2 repeated digits, but there are N(4, 0) = 13 such cases.
In the same way we obtain the following results for 4-digit primes.
For d = 0 to 9, the sum of all S(4, d) is 273700.
Find the sum of all S(10, d).
题目:
考虑含有重复位的四位数素数。显然这四位数不能全部相同:1111 可以被 11 整除,2222 可以被 22 整除,等等。但是有 9 个四位的素数包含三个 1:
1117, 1151, 1171, 1181, 1511, 1811, 2111, 4111, 8111
我们用 M(n, d) 来表示一个 n 位素数中重复位的最大值,其中 d 代表重复的数字。用 N(n, d) 代表这样的素数的数量,S(n, d) 来代表这些素数之和。
所以 M(4,1) = 3,是四位的素数中重复位的最大值,其中 1 是重复的那一位数。共有 N(4,1)=9 个这样的素数,他们的和 S(4,1)=22275。事实证明对于 d=0,只能有 M(4,0)=2 个重复位,但是却有 N(4,0)=13 个这样的数。
用同样的方法我们可以得到对于四位数素数的如下结果:
对于 d=0 到 9,S(4,d) 之和为 273700。
求所有 S(10,d) 之和。
|