|
马上注册,结交更多好友,享用更多功能^_^
您需要 登录 才可以下载或查看,没有账号?立即注册
x
本帖最后由 永恒的蓝色梦想 于 2020-6-28 08:37 编辑
Hexagonal tile differences
A hexagonal tile with number 1 is surrounded by a ring of six hexagonal tiles, starting at "12 o'clock" and numbering the tiles 2 to 7 in an anti-clockwise direction.
New rings are added in the same fashion, with the next rings being numbered 8 to 19, 20 to 37, 38 to 61, and so on. The diagram below shows the first three rings.
By finding the difference between tile n and each of its six neighbours we shall define PD(n) to be the number of those differences which are prime.
For example, working clockwise around tile 8 the differences are 12, 29, 11, 6, 1, and 13. So PD(8) = 3.
In the same way, the differences around tile 17 are 1, 17, 16, 1, 11, and 10, hence PD(17) = 2.
It can be shown that the maximum value of PD(n) is 3.
If all of the tiles for which PD(n) = 3 are listed in ascending order to form a sequence, the 10th tile would be 271.
Find the 2000th tile in this sequence.
题目:
编号为 1 的六角形砖块被 6 个六角形砖块形成的环所环绕,从 12 点的位置开始,逆时针方向编号 2 到 7。
用同样的方法构造新的环,编号从 8 到 19,20 到 37,38 到 61,等等。下图显示了前三层环。
通过观察编号为 n 的砖块以及它周围的六个相邻砖块,我们定义 PD(n) 为编号与 n 之差为质数的砖块的个数。
例如,以 8 号砖为中心顺时针来看,差分别是:12,29,11,6,1 和 13,所以 PD(8)=3。
类似的,17 号砖的邻居与它的差是:1,17,16,1,11,10,所以 PD(17)=2。
可证明 PD(n) 的最大值可以取到 3。
如果所有 PD(n)=3 的砖块按照升序排列,我们得到一个序列,这个序列中的第 10 个的编号是 271。
找出这个序列中第 2000 个的编号。
|
|