鱼C论坛

 找回密码
 立即注册
查看: 2367|回复: 3

题目134:求与任意质数对相关的最小质数

[复制链接]
发表于 2016-8-24 18:06:13 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能^_^

您需要 登录 才可以下载或查看,没有账号?立即注册

x
Prime pair connection

Consider the consecutive primes p1 = 19 and p2 = 23. It can be verified that 1219 is the smallest number such that the last digits are formed by p1 whilst also being divisible by p2.

In fact, with the exception of p1 = 3 and p2 = 5, for every pair of consecutive primes, p2 > p1, there exist values of n for which the last digits are formed by p1 and n is divisible by p2. Let S be the smallest of these values of n.

Find ∑ S for every pair of consecutive primes with 5 ≤ p1 ≤ 1000000.


题目:

考虑两个连续质数 p1 = 19 和 p2 = 23。可以证明 1219 是具有如下性质的最小数字:该数字的最后部分由 p1 组成,同时该数字能够被 p2 整除。

事实上,除了 3 和 5,对于每一对连续质数,p2 > p1,都存在一个具有上述性质的数字 n。令 S 为这些 n 之中最小的数。

对于 5 ≤ p1 ≤ 1000000,求所有连续质数对的 S 之和。

想知道小甲鱼最近在做啥?请访问 -> ilovefishc.com
回复

使用道具 举报

发表于 2017-7-20 08:11:11 | 显示全部楼层
估计要跑4~5个小时
from math import log10
from numba import jit
primes=[True]*1000000
primes[:2]=[False]*2
for i,prime in enumerate(primes):
        if prime:
                for j in range(i*i, 1000000, i):
                        primes[j]=False
plist = [k for k,trueprime in enumerate(primes) if trueprime and k >=5]

@jit
def solve():
        S = 0
        for i in range(1, len(plist)):
                p1 = plist[i-1]
                p2 = plist[i]
                k = 1
                s = (10**(int(log10(p1))+1))*k+p1
                while s % p2:
                        k += 1
                        s = (10**(int(log10(p1))+1))*k+p1
                else:
                        S += s
        return S
print(solve())
想知道小甲鱼最近在做啥?请访问 -> ilovefishc.com
回复 支持 反对

使用道具 举报

发表于 2020-5-1 12:11:59 | 显示全部楼层
本帖最后由 guosl 于 2022-9-1 20:02 编辑
/*
答案:18613426663617118
耗时:9.44929 (AMD 5600G)
*/
#include <iostream>
#include <vector>
#include <cstring>
#include <cmath>
#include <omp.h>
using namespace std;

char cp[1002004];//记录1000000以下的素数位置
vector<int> vp;  //记录1000000以下的素数

int main(void)
{
  //应用筛法求出素数的位置
  memset(cp, 1, sizeof(cp));
  cp[0] = 0;
  cp[1] = 0;
  for (int i = 2; i <= 1001; ++i)
  {
    if (cp[i] == 0)
      continue;
    for (int j = i * i; j <= 1002001; j += i)
      cp[j] = 0;
  }
  //记录素数
  for (int i = 5; i <= 1002001; ++i)
  {
    if (cp[i] == 1)
      vp.push_back(i);
  }
  //求出1000000以下的素数个数
  int nK = (int)vp.size() - 1;
  while (vp[nK] > 1000000)
    --nK;
  unsigned long long nS = 0;
#pragma omp parallel for firstprivate(nK) shared(vp) reduction(+:nS) schedule(dynamic,18)
  for (int i = 0; i <= nK; ++i)//枚举连续的素数对
  {
    int p1 = vp[i], p2 = vp[i + 1];
    //求出p1的位数
    int b = 1, nTemp = p1;
    while (nTemp != 0)
    {
      b *= 10;
      nTemp /= 10;
    }
    //求出最小满足条件的数
    unsigned long long y = p2 - p1;
    while ((y % b) != 0)
    {
      y += p2;
    }
    nS += y + p1;
  }
  cout << nS << endl;
  return 0;
}
想知道小甲鱼最近在做啥?请访问 -> ilovefishc.com
回复 支持 反对

使用道具 举报

发表于 2022-9-2 19:56:41 | 显示全部楼层
本题用OpenACC编程也非常简单,将上面的代码作很小的修改即可。
/*
答案:18613426663617118
耗时:6.2234 (GTX970)
*/
#include <iostream>
#include <cstring>
#include <openacc.h>
using namespace std;

char cp[1002004];//记录1000000以下的素数位置
int vp[1002004];  //记录1000000以下的素数

int main(void)
{
  //应用筛法求出素数的位置
  memset(cp, 1, sizeof(cp));
  cp[0] = 0;
  cp[1] = 0;
  for (int i = 2; i <= 1001; ++i)
  {
    if (cp[i] == 0)
      continue;
    for (int j = i * i; j <= 1002001; j += i)
      cp[j] = 0;
  }
  //记录素数
  int nK = 0;
  for (int i = 5; i <= 1002001; ++i)
  {
    if (cp[i] == 1)
      vp[nK++] = i;
  }
  --nK;
  //出1000000以下的素数个数
  while (vp[nK] > 1000000)
    --nK;
  unsigned long long nS = 0;
  #pragma acc kernels loop reduction(+:nS)
  for (int i = 0; i <= nK; ++i)//枚举连续的素数对
  {
    int p1 = vp[i], p2 = vp[i + 1];
    //求出p1的位数
    int b = 1, nTemp = p1;
    while (nTemp != 0)
    {
      b *= 10;
      nTemp /= 10;
    }
    //求出最小满足条件的数
    unsigned long long y = p2 - p1;
    while ((y % b) != 0)
    {
      y += p2;
    }
    nS += y + p1;
  }
  cout << nS << endl;
  return 0;
}
想知道小甲鱼最近在做啥?请访问 -> ilovefishc.com
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

小黑屋|手机版|Archiver|鱼C工作室 ( 粤ICP备18085999号-1 | 粤公网安备 44051102000585号)

GMT+8, 2024-12-22 21:14

Powered by Discuz! X3.4

© 2001-2023 Discuz! Team.

快速回复 返回顶部 返回列表