|
马上注册,结交更多好友,享用更多功能^_^
您需要 登录 才可以下载或查看,没有账号?立即注册
x
Modified Fibonacci golden nuggets
Consider the infinite polynomial series AG(x) = xG1 + x2G2 + x3G3 + ..., where Gk is the kth term of the second order recurrence relation Gk = Gk−1 + Gk−2, G1 = 1 and G2 = 4; that is, 1, 4, 5, 9, 14, 23, ... .
For this problem we shall be concerned with values of x for which AG(x) is a positive integer.
The corresponding values of x for the first five natural numbers are shown below.
We shall call AG(x) a golden nugget if x is rational, because they become increasingly rarer; for example, the 20th golden nugget is 211345365.
Find the sum of the first thirty golden nuggets.
题目:
考虑无限多项式序列 AG(x) = xG1 + x2G2 + x3G3 + ...,其中 Gk 是递归关系 Gk = Gk−1 + Gk−2, G1 = 1, G2 = 4 的第 k 项;也就是 1,4,5,9,14,23, ...
对于此题目,我们考虑使得 AG(x) 为正整数的 x 值。
前五个自然数对应的 x 值如下表所示:
如果 x 是有理数,我们将 AG(x) 称为一个金块,因为这样的数非常的少;例如,第 20 个金块是 211345365。
求前 30 个金块之和。
|
|