|
马上注册,结交更多好友,享用更多功能^_^
您需要 登录 才可以下载或查看,没有账号?立即注册
x
Investigating progressive numbers, n, which are also square
A positive integer, n, is divided by d and the quotient and remainder are q and r respectively. In addition d, q, and r are consecutive positive integer terms in a geometric sequence, but not necessarily in that order.
For example, 58 divided by 6 has quotient 9 and remainder 4. It can also be seen that 4, 6, 9 are consecutive terms in a geometric sequence (common ratio 3/2).
We will call such numbers, n, progressive.
Some progressive numbers, such as 9 and 10404 = 1022, happen to also be perfect squares.
The sum of all progressive perfect squares below one hundred thousand is 124657.
Find the sum of all progressive perfect squares below one trillion (1012).
题目:
正整数 n 被 d 除所得的商和余数分别为 q 和 r。此外,d,q 和 r 是一个等比数列中的连续三项,但未必是有序的。
例如,58 除以 6,商为 9,余数为 4。可知 4,6,9 是公比为 3/2 的等比数列中的连续三项。
我们将这样的 n 成为渐近数。
有的渐近数同时也是完全平方数,比如 9 和 10404=1022。
100000 以下所有的完全平方渐近数之和是 124657。
求 1012 以下所有完全平方渐近数之和。
|
|