鱼C论坛

 找回密码
 立即注册
查看: 2546|回复: 1

题目157:7求解丢番图方程1/a+1/b= p/10^n

[复制链接]
发表于 2016-9-13 15:35:55 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能^_^

您需要 登录 才可以下载或查看,没有账号?立即注册

x
本帖最后由 欧拉计划 于 2016-9-14 15:53 编辑
Solving the diophantine equation 1/a+1/b= p/10n

Consider the diophantine equation 1/a+1/b= p/10n with a, b, p, n positive integers and a ≤ b.

For n=1 this equation has 20 solutions that are listed below:

QQ20160914-1@2x.png

How many solutions has this equation for 1 ≤ n ≤ 9?


题目:

考虑丢番图方程 1/a+1/b= p/10n ,a, b, p, n 都是正数,并且 a ≤ b

对于 n=1,则该方程有下面二十个解:

1/1+1/1=20/10            1/1+1/2=15/10           1/1+1/5=12/10            1/1+1/10=11/10            1/2+1/2=10/10
1/2+1/5=7/10              1/2+1/10=6/10            1/3+1/6=5/10            1/3+1/15=4/10              1/4+1/4=5/10
1/4+1/20=3/10             1/5+1/5=4/10           1/5+1/10=3/10            1/6+1/30=2/10              1/10+1/10=2/10
1/11+1/110=1/10         1/12+1/60=1/10          1/14+1/35=1/10          1/15+1/30=1/10          1/20+1/20=1/10

请问,对于 1 ≤ n ≤ 9,该方程有多少个解?

想知道小甲鱼最近在做啥?请访问 -> ilovefishc.com
回复

使用道具 举报

发表于 2022-9-21 21:26:01 | 显示全部楼层
本帖最后由 guosl 于 2022-9-22 10:36 编辑

先将p设为1,则原方程化为1/a + 1/b = 1/10^n。令m=10^n,a=m+x,b=m+y。则方程可以化为xy=m^2。对m^2进行因数分解可以求解,如果a,b有公因数p>1,则这个解可以化成1/a+1/b=p/10^n的解。
/*
答案:53490
*/
#include <iostream>
#include <cmath>
using namespace std;

const int N = 9;

unsigned long long mpow(int n, int m)
{
  unsigned long long p = 1;
  for (int i = 0; i < n; ++i)
    p *= 2;
  for (int i = 0; i < m; ++i)
    p *= 5;
  return p;
}

unsigned long long gcd(unsigned long long x, unsigned long long y)
{
  if (y == 0)
    return x;
  unsigned long long z = x % y;
  while (z != 0)
  {
    x = y;
    y = z;
    z = x % y;
  }
  return y;
}

unsigned long long getmp(unsigned long long k)
{
  if ((k % 2) == 0)
    return 2;
  unsigned long long u = (unsigned long long)sqrt((double)k);
  for (unsigned long long i = 3; i <= u; i += 2)
  {
    if (k % i == 0)
      return i;
  }
  return k;
}

int getdc(unsigned long long d)
{
  int nC = 1;
  while (d != 1)
  {
    unsigned long long p = getmp(d);
    int k = 0;
    while (d % p == 0)
    {
      ++k;
      d /= p;
    }
    nC *= k + 1;
  }
  return nC;
}

int main(void)
{
  int nCount = 0;
  unsigned long long M = 1;
  for (int n = 1; n <= N; ++n)
  {
    M *= 10;
    for (int i = 0; i <= 2 * n; ++i)
    {
      unsigned long long K1 = mpow(i, 0);
      if (K1 > M)
        break;
      for (int j = 0; j <= 2 * n; ++j)
      {
        unsigned long long K2 = K1 * mpow(0, j);
        if (K2 > M)
          break;
        unsigned long long a = M + K2, b = M + mpow(2 * n - i, 2 * n - j);
        unsigned long long d = gcd(a, b);
        nCount += getdc(d);
      }
    }
  }
  cout << nCount << endl;
  return 0;
}
想知道小甲鱼最近在做啥?请访问 -> ilovefishc.com
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

小黑屋|手机版|Archiver|鱼C工作室 ( 粤ICP备18085999号-1 | 粤公网安备 44051102000585号)

GMT+8, 2024-12-22 21:26

Powered by Discuz! X3.4

© 2001-2023 Discuz! Team.

快速回复 返回顶部 返回列表