|
马上注册,结交更多好友,享用更多功能^_^
您需要 登录 才可以下载或查看,没有账号?立即注册
x
Tri-colouring a triangular grid
Consider the following configuration of 64 triangles:
We wish to colour the interior of each triangle with one of three colours: red, green or blue, so that no two neighbouring triangles have the same colour. Such a colouring shall be called valid. Here, two triangles are said to be neighbouring if they share an edge.
Note: if they only share a vertex, then they are not neighbours.
For example, here is a valid colouring of the above grid:
A colouring C' which is obtained from a colouring C by rotation or reflection is considered distinct from C unless the two are identical.
How many distinct valid colourings are there for the above configuration?
题目:
考虑如下64个三角形的组合:
我们希望将其中的每个三角形用红,绿,蓝之中的一种颜色着色,要求任意相邻的两个三角形具有不同的颜色。符合如上条件的着色为有效着色。两个三角形相邻的条件为它们有共同的边。
注意:如果两个三角形只共享一个顶点,则不算相邻。
例如,下面是上述格子的一种有效着色:
如果一种着色 C 旋转或镜面反射之后得到的着色 C' 与原来的着色不同,也算作不同的着色。
问上面的格子有多少种有效着色?
|
|